Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline | |
import pandas as pd | |
import json | |
pipe = pipeline("summarization", model="Gabriel/bart-base-cnn-xsum-swe") | |
def generate(in_text): | |
print(in_text) | |
answer = pipe(in_text, num_beams=5 ,min_length=20, max_length=120) | |
print(answer) | |
return answer[0]["summary_text"] | |
def update_history(df, in_text, gen_text ,generation_type, parameters): | |
# get rid of first seed phrase | |
new_row = [{"In_text": in_text, | |
"Gen_text": gen_text, | |
"Generation Type": generation_type, | |
"Parameters": json.dumps(parameters)}] | |
return pd.concat([df, pd.DataFrame(new_row)]) | |
def generate_transformer(in_text, num_beams ,history): | |
gen_text= generate(in_text) | |
return gen_text, update_history(history, in_text, gen_text, "Transformer", {"num_beams": num_beams}) | |
with gr.Blocks() as demo: | |
gr.Markdown("""# Summarization Engine!""") | |
with gr.Accordion("See Details", open=False): | |
gr.Markdown("lorem ipsum") | |
with gr.Tabs(): | |
with gr.TabItem("Transformer Generation"): | |
gr.Markdown( | |
"""The default parameters for distilgpt2 work well to generate moves. Use this tab as | |
a baseline for your experiments.""") | |
with gr.Row(): | |
with gr.Column(scale=4): | |
text_baseline_transformer= gr.Textbox(lines=4,label="Input Text", placeholder="hej hej",) | |
with gr.Column(scale=3): | |
with gr.Row(): | |
num_beams = gr.Slider(minimum=2, maximum=10, value=2, step=1, label="Number of Beams2") | |
output_basline_transformer = gr.Textbox(label="Output Text") | |
transformer_button = gr.Button("Summarize!") | |
# with gr.TabItem("Strong Baseline"): | |
# gr.Markdown( | |
# """The default parameters for distilgpt2 work well to generate moves. Use this tab as | |
# a baseline for your experiments.""") | |
# with gr.Row(): | |
# with gr.Column(scale=4): | |
# text_baseline= gr.Textbox(lines=4,label="Input Text", placeholder="hej hej",) | |
# with gr.Column(scale=3): | |
# with gr.Row(): | |
# num_beams2 = gr.Slider(minimum=2, maximum=10, value=2, step=1, label="Number of Beams2") | |
# num_beams3 = gr.Slider(minimum=2, maximum=10, value=2, step=1, label="Number of Beams3") | |
# output_basline = gr.Textbox(label="Output Text") | |
# baseline_button = gr.Button("Summarize!") | |
# with gr.TabItem("LexRank"): | |
# gr.Markdown( | |
# """The default parameters for distilgpt2 work well to generate moves. Use this tab as | |
# a baseline for your experiments.""") | |
# with gr.Row(): | |
# label="Number of Beams") | |
# text_baseline= gr.Textbox(label="Input Text", placeholder="hej hej",) | |
# output_basline = gr.Textbox(label="Output Text") | |
# baseline_button = gr.Button("Summarize!") | |
gr.Examples([["hi", 5]], [text_baseline_transformer, num_beams]) | |
with gr.Box(): | |
gr.Markdown("<h3> Generation History <h3>") | |
# Displays a dataframe with the history of moves generated, with parameters | |
history = gr.Dataframe(headers=["In_text", "Gen_text", "Generation Type", "Parameters"], overflow_row_behaviour="show_ends", wrap=True) | |
with gr.Box(): | |
gr.Markdown("<h3>How did you make this?<h3>") | |
# gr.Markdown("""hej bottom.""") | |
transformer_button.click(generate_transformer, inputs=[text_baseline_transformer, num_beams ,history], outputs=[output_basline_transformer , history] ) | |
# baseline_button.click(generate_transformer, inputs=[text_baseline, num_beams2 ,history], outputs=[output_basline,history] ) | |
demo.launch() |