Spaces:
Sleeping
Sleeping
from cached_path import cached_path | |
# from dp.phonemizer import Phonemizer | |
print("NLTK") | |
import nltk | |
nltk.download('punkt') | |
print("SCIPY") | |
from scipy.io.wavfile import write | |
print("TORCH STUFF") | |
import torch | |
print("START") | |
torch.manual_seed(0) | |
torch.backends.cudnn.benchmark = False | |
torch.backends.cudnn.deterministic = True | |
import random | |
random.seed(0) | |
import numpy as np | |
np.random.seed(0) | |
# load packages | |
import time | |
import random | |
import yaml | |
from munch import Munch | |
import numpy as np | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
import torchaudio | |
import librosa | |
from nltk.tokenize import word_tokenize | |
from models import * | |
from utils import * | |
from text_utils import TextCleaner | |
textclenaer = TextCleaner() | |
to_mel = torchaudio.transforms.MelSpectrogram( | |
n_mels=80, n_fft=2048, win_length=1200, hop_length=300) | |
mean, std = -4, 4 | |
def length_to_mask(lengths): | |
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) | |
mask = torch.gt(mask+1, lengths.unsqueeze(1)) | |
return mask | |
def preprocess(wave): | |
wave_tensor = torch.from_numpy(wave).float() | |
mel_tensor = to_mel(wave_tensor) | |
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std | |
return mel_tensor | |
def compute_style(path): | |
wave, sr = librosa.load(path, sr=24000) | |
audio, index = librosa.effects.trim(wave, top_db=30) | |
if sr != 24000: | |
audio = librosa.resample(audio, sr, 24000) | |
mel_tensor = preprocess(audio).to(device) | |
with torch.no_grad(): | |
ref_s = model.style_encoder(mel_tensor.unsqueeze(1)) | |
ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1)) | |
return torch.cat([ref_s, ref_p], dim=1) | |
device = 'cpu' | |
if torch.cuda.is_available(): | |
device = 'cuda' | |
elif torch.backends.mps.is_available(): | |
print("MPS would be available but cannot be used rn") | |
# device = 'mps' | |
# config = yaml.safe_load(open("Models/LibriTTS/config.yml")) | |
config = yaml.safe_load(open(str(cached_path("hf://yl4579/StyleTTS2-LibriTTS/Models/LibriTTS/config.yml")))) | |
# load pretrained ASR model | |
ASR_config = config.get('ASR_config', False) | |
ASR_path = config.get('ASR_path', False) | |
text_aligner = load_ASR_models(ASR_path, ASR_config) | |
# load pretrained F0 model | |
F0_path = config.get('F0_path', False) | |
pitch_extractor = load_F0_models(F0_path) | |
# load BERT model | |
from Utils.PLBERT.util import load_plbert | |
BERT_path = config.get('PLBERT_dir', False) | |
plbert = load_plbert(BERT_path) | |
model_params = recursive_munch(config['model_params']) | |
model = build_model(model_params, text_aligner, pitch_extractor, plbert) | |
_ = [model[key].eval() for key in model] | |
_ = [model[key].to(device) for key in model] | |
# params_whole = torch.load("epoch_2nd_00099.pth", map_location='cpu') | |
params_whole = torch.load(str(cached_path("hf://Bluebomber182/Judy-Hopps-StyleTTS2-Model/blob/main/epoch_2nd_00099.pth")), map_location='cpu') | |
params = params_whole['net'] | |
for key in model: | |
if key in params: | |
print('%s loaded' % key) | |
try: | |
model[key].load_state_dict(params[key]) | |
except: | |
from collections import OrderedDict | |
state_dict = params[key] | |
new_state_dict = OrderedDict() | |
for k, v in state_dict.items(): | |
name = k[7:] # remove `module.` | |
new_state_dict[name] = v | |
# load params | |
model[key].load_state_dict(new_state_dict, strict=False) | |
# except: | |
# _load(params[key], model[key]) | |
_ = [model[key].eval() for key in model] | |
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule | |
sampler = DiffusionSampler( | |
model.diffusion.diffusion, | |
sampler=ADPM2Sampler(), | |
sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters | |
clamp=False | |
) | |
voicelist = ['f-us-1', 'f-us-2', 'f-us-3', 'f-us-4', 'm-us-1', 'm-us-2', 'm-us-3', 'm-us-4'] | |
voices = {} | |
# todo: cache computed style, load using pickle | |
for v in voicelist: | |
print(f"Loading voice {v}") | |
voices[v] = compute_style(f'voices/{v}.wav') | |
import pickle | |
with open('voices.pkl', 'wb') as f: | |
pickle.dump(voices, f) |