GabMartino
commited on
Commit
Β·
e3c0725
1
Parent(s):
425a478
First Commit.
Browse files- README.md +10 -6
- app.py +162 -0
- embedders/LatinBERT.py +247 -0
- embedders/__pycache__/LatinBERT.cpython-39.pyc +0 -0
- embedders/__pycache__/labse.cpython-39.pyc +0 -0
- embedders/labse.py +39 -0
- embedders/latin_bert/latin_bert/config.json +19 -0
- embedders/latin_bert/latin_bert/pytorch_model.bin +3 -0
- embedders/latin_bert/latin_bert/vocab.txt +0 -0
- embedders/tokenizer/latin.subword.encoder +0 -0
README.md
CHANGED
@@ -1,12 +1,16 @@
|
|
1 |
---
|
2 |
-
title: Serica Intelligent Search
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: streamlit
|
7 |
-
sdk_version: 1.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Serica Intelligent Search
|
3 |
+
emoji: π
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: pink
|
6 |
sdk: streamlit
|
7 |
+
sdk_version: 1.10.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: agpl-3.0
|
11 |
---
|
12 |
|
13 |
+
|
14 |
+
**This is a fork from https://huggingface.co/spaces/galatolo/serica-intelligent-search**
|
15 |
+
|
16 |
+
_Check **latin-bert** https://github.com/dbamman/latin-bert_
|
app.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
import os
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import streamlit as st
|
7 |
+
from elasticsearch import Elasticsearch
|
8 |
+
|
9 |
+
from embedders.LatinBERT import LatinBERT
|
10 |
+
from embedders.labse import LaBSE
|
11 |
+
|
12 |
+
models = dict(
|
13 |
+
LaBSE=LaBSE(),
|
14 |
+
LatinBERT=LatinBERT(bertPath="./embedders/latin_bert/latin_bert", tokenizerPath="./embedders/tokenizer/latin.subword.encoder")
|
15 |
+
)
|
16 |
+
verify_certs=False
|
17 |
+
es = Elasticsearch(os.environ["ELASTIC_HOST"], basic_auth=os.environ["ELASTIC_AUTH"].split(":"), verify_certs=verify_certs)
|
18 |
+
|
19 |
+
|
20 |
+
def searchCloseSentence(document, startNumber, numCloseSentence=3):
|
21 |
+
|
22 |
+
queryPrevious = {
|
23 |
+
"bool": {
|
24 |
+
"must": [{
|
25 |
+
"term": {
|
26 |
+
"document": document
|
27 |
+
}
|
28 |
+
}, {
|
29 |
+
"range": {
|
30 |
+
"number": {
|
31 |
+
"gte": startNumber - numCloseSentence,
|
32 |
+
"lt": startNumber,
|
33 |
+
}
|
34 |
+
}
|
35 |
+
}
|
36 |
+
]
|
37 |
+
}
|
38 |
+
}
|
39 |
+
|
40 |
+
queryNext = {
|
41 |
+
"bool": {
|
42 |
+
"must": [{
|
43 |
+
"term": {
|
44 |
+
"document": document
|
45 |
+
}
|
46 |
+
}, {
|
47 |
+
"range": {
|
48 |
+
"number": {
|
49 |
+
"lte": startNumber+3,
|
50 |
+
"gt": startNumber,
|
51 |
+
}
|
52 |
+
}
|
53 |
+
}
|
54 |
+
]
|
55 |
+
}
|
56 |
+
}
|
57 |
+
|
58 |
+
previous = es.search(
|
59 |
+
index="sentences",
|
60 |
+
query=queryPrevious
|
61 |
+
)
|
62 |
+
nexts = es.search(
|
63 |
+
index="sentences",
|
64 |
+
query=queryNext
|
65 |
+
)
|
66 |
+
previous_hits = sorted(previous["hits"]["hits"], key=lambda e: e["_source"]["number"])
|
67 |
+
previous_context = "".join([r["_source"]["sentence"] for r in previous_hits])
|
68 |
+
|
69 |
+
subsequent_hits = sorted(nexts["hits"]["hits"], key=lambda e: e["_source"]["number"])
|
70 |
+
subsequent_context = "".join([r["_source"]["sentence"] for r in subsequent_hits])
|
71 |
+
|
72 |
+
document_name_results = es.search(
|
73 |
+
index="documents",
|
74 |
+
query={
|
75 |
+
"bool": {
|
76 |
+
"must": [{
|
77 |
+
"term": {
|
78 |
+
"id": document
|
79 |
+
}
|
80 |
+
}
|
81 |
+
]
|
82 |
+
}
|
83 |
+
}
|
84 |
+
)
|
85 |
+
|
86 |
+
document_name_data = document_name_results["hits"]["hits"][0]["_source"]
|
87 |
+
document_name = f"{document_name_data['title']} - {document_name_data['author']}"
|
88 |
+
|
89 |
+
return document_name, previous_context, subsequent_context
|
90 |
+
|
91 |
+
def prepareResults(results):
|
92 |
+
results = results['hits']['hits']
|
93 |
+
|
94 |
+
string_results = []
|
95 |
+
for sentence in results:
|
96 |
+
text = sentence['_source']['sentence']
|
97 |
+
score = sentence['_score']
|
98 |
+
document = sentence['_source']['document']
|
99 |
+
number = sentence['_source']['number']
|
100 |
+
document_name, previous_context, subsequent_context = searchCloseSentence(document, number, 3)
|
101 |
+
string_result = f"#### {document_name} (score: {score:.2f})\n{previous_context} **{text}** {subsequent_context}"
|
102 |
+
string_results.append(string_result)
|
103 |
+
|
104 |
+
return string_results
|
105 |
+
def search():
|
106 |
+
if query == "":
|
107 |
+
return
|
108 |
+
status_indicator.write(f"Computing query embeddings...")
|
109 |
+
|
110 |
+
query_vector = None
|
111 |
+
embeddingType = None
|
112 |
+
if model_name in ["LaBSE", "LatinBERT"]:
|
113 |
+
query_vector = models[model_name](query)[0, :].numpy().tolist()
|
114 |
+
embeddingType = "labse_embedding" if model_name == "LaBSE" else "latinBERT_embedding"
|
115 |
+
elif model_name in ["LaBSE-LatinBERT-Mean","LaBSE-LatinBERT-CONCAT"]:
|
116 |
+
query_vector_labse = models['LaBSE'](query)[0, :].numpy().tolist()
|
117 |
+
query_vector_latinBERT = models['LatinBERT'](query)[0, :].numpy().tolist()
|
118 |
+
|
119 |
+
if model_name == "LaBSE-LatinBERT-Mean":
|
120 |
+
query_vector = np.mean([query_vector_labse, query_vector_latinBERT], axis=0).tolist()
|
121 |
+
embeddingType = "mean_embedding"
|
122 |
+
elif model_name == "LaBSE-LatinBERT-CONCAT":
|
123 |
+
query_vector = query_vector_latinBERT + query_vector_labse
|
124 |
+
embeddingType = "concat_embedding"
|
125 |
+
|
126 |
+
|
127 |
+
script = {
|
128 |
+
"source": f"cosineSimilarity(params.query_vector, '{embeddingType}') + 1.0",
|
129 |
+
"params": {"query_vector": query_vector}
|
130 |
+
}
|
131 |
+
results = es.search(
|
132 |
+
index='sentences',
|
133 |
+
query={
|
134 |
+
"script_score": {
|
135 |
+
"query": {"match_all": {}},
|
136 |
+
"script": script
|
137 |
+
|
138 |
+
}
|
139 |
+
|
140 |
+
},
|
141 |
+
size=limit
|
142 |
+
)
|
143 |
+
|
144 |
+
pretty_results = prepareResults(results)
|
145 |
+
for res in pretty_results:
|
146 |
+
results_placeholder.markdown(res)
|
147 |
+
|
148 |
+
|
149 |
+
|
150 |
+
st.header("Serica Intelligent Search")
|
151 |
+
st.write("Perform an intelligent search using a Sentence Embedding Transformer model on the SERICA database")
|
152 |
+
model_name = st.selectbox("Model", ["LaBSE", "LatinBERT", "LaBSE-LatinBERT-Mean", "LaBSE-LatinBERT-CONCAT"])
|
153 |
+
limit = st.number_input("Number of results (sentences) ", 25)
|
154 |
+
query = st.text_input("Query", value="")
|
155 |
+
status_indicator = st.empty()
|
156 |
+
do_search = st.button("Search", on_click=search)
|
157 |
+
results_placeholder = st.container()
|
158 |
+
|
159 |
+
if do_search:
|
160 |
+
search()
|
161 |
+
#do_search(model_name, query, limit, results_placeholder, status_indicator)
|
162 |
+
|
embedders/LatinBERT.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from types import SimpleNamespace
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from transformers import BertTokenizerFast, BertForMaskedLM, BertTokenizer, BertModel
|
7 |
+
from tensor2tensor.data_generators import text_encoder
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
|
11 |
+
class LatinBERT(nn.Module):
|
12 |
+
|
13 |
+
def __init__(self, bertPath, tokenizerPath):
|
14 |
+
super().__init__()
|
15 |
+
self.tokenizer = LatinTokenizer(tokenizerPath) #BertTokenizer.from_pretrained("bert-base-cased")
|
16 |
+
self.model = BertModel.from_pretrained(bertPath)#.to("cuda")
|
17 |
+
self.model.eval()
|
18 |
+
|
19 |
+
@torch.no_grad()
|
20 |
+
def __call__(self, sentences):
|
21 |
+
if not isinstance(sentences, list):
|
22 |
+
sentences = [sentences]
|
23 |
+
|
24 |
+
tokens_ids, masks, transforms = self.tokenizer.tokenize(sentences, 512)
|
25 |
+
#tokens_ids = tokens_ids.to("cuda")
|
26 |
+
#tokens_ids = tokens_ids.squeeze()
|
27 |
+
if tokens_ids.shape[-1] > 512:
|
28 |
+
print(tokens_ids.shape)
|
29 |
+
tokens_ids = torch.narrow(tokens_ids, -1, 0, 512)
|
30 |
+
|
31 |
+
tokens_ids = tokens_ids.reshape((-1, tokens_ids.shape[-1]))
|
32 |
+
outputs = self.model.forward(tokens_ids)
|
33 |
+
embeddings = outputs.pooler_output
|
34 |
+
embeddings = F.normalize(embeddings, p=2).cpu()
|
35 |
+
return embeddings
|
36 |
+
|
37 |
+
@property
|
38 |
+
def dim(self):
|
39 |
+
return 768
|
40 |
+
|
41 |
+
|
42 |
+
class LatinTokenizer:
|
43 |
+
def __init__(self, model):
|
44 |
+
self.vocab = dict()
|
45 |
+
self.reverseVocab = dict()
|
46 |
+
self.encoder = text_encoder.SubwordTextEncoder(model)
|
47 |
+
|
48 |
+
self.vocab["[PAD]"] = 0
|
49 |
+
self.vocab["[UNK]"] = 1
|
50 |
+
self.vocab["[CLS]"] = 2
|
51 |
+
self.vocab["[SEP]"] = 3
|
52 |
+
self.vocab["[MASK]"] = 4
|
53 |
+
|
54 |
+
for key in self.encoder._subtoken_string_to_id:
|
55 |
+
self.vocab[key] = self.encoder._subtoken_string_to_id[key] + 5
|
56 |
+
self.reverseVocab[self.encoder._subtoken_string_to_id[key] + 5] = key
|
57 |
+
|
58 |
+
def convert_tokens_to_ids(self, tokens):
|
59 |
+
wp_tokens = list()
|
60 |
+
for token in tokens:
|
61 |
+
if token == "[PAD]":
|
62 |
+
wp_tokens.append(0)
|
63 |
+
elif token == "[UNK]":
|
64 |
+
wp_tokens.append(1)
|
65 |
+
elif token == "[CLS]":
|
66 |
+
wp_tokens.append(2)
|
67 |
+
elif token == "[SEP]":
|
68 |
+
wp_tokens.append(3)
|
69 |
+
elif token == "[MASK]":
|
70 |
+
wp_tokens.append(4)
|
71 |
+
else:
|
72 |
+
wp_tokens.append(self.vocab[token])
|
73 |
+
|
74 |
+
return wp_tokens
|
75 |
+
|
76 |
+
def tokenize(self, sentences, max_batch):
|
77 |
+
#print(len(sentences))
|
78 |
+
maxLen=0
|
79 |
+
for sentence in sentences:
|
80 |
+
length=0
|
81 |
+
for word in sentence:
|
82 |
+
toks=self._tokenize(word)
|
83 |
+
length+=len(toks)
|
84 |
+
|
85 |
+
if length> maxLen:
|
86 |
+
maxLen=length
|
87 |
+
#print(maxLen)
|
88 |
+
all_data=[]
|
89 |
+
all_masks=[]
|
90 |
+
all_labels=[]
|
91 |
+
all_transforms=[]
|
92 |
+
|
93 |
+
for sentence in sentences:
|
94 |
+
tok_ids=[]
|
95 |
+
input_mask=[]
|
96 |
+
labels=[]
|
97 |
+
transform=[]
|
98 |
+
|
99 |
+
all_toks=[]
|
100 |
+
n=0
|
101 |
+
for idx, word in enumerate(sentence):
|
102 |
+
toks=self._tokenize(word)
|
103 |
+
all_toks.append(toks)
|
104 |
+
n+=len(toks)
|
105 |
+
|
106 |
+
cur=0
|
107 |
+
for idx, word in enumerate(sentence):
|
108 |
+
toks=all_toks[idx]
|
109 |
+
ind=list(np.zeros(n))
|
110 |
+
for j in range(cur,cur+len(toks)):
|
111 |
+
ind[j]=1./len(toks)
|
112 |
+
cur+=len(toks)
|
113 |
+
transform.append(ind)
|
114 |
+
|
115 |
+
tok_ids.extend(self.convert_tokens_to_ids(toks))
|
116 |
+
|
117 |
+
input_mask.extend(np.ones(len(toks)))
|
118 |
+
labels.append(1)
|
119 |
+
|
120 |
+
all_data.append(tok_ids)
|
121 |
+
all_masks.append(input_mask)
|
122 |
+
all_labels.append(labels)
|
123 |
+
all_transforms.append(transform)
|
124 |
+
|
125 |
+
lengths = np.array([len(l) for l in all_data])
|
126 |
+
|
127 |
+
# Note sequence must be ordered from shortest to longest so current_batch will work
|
128 |
+
ordering = np.argsort(lengths)
|
129 |
+
|
130 |
+
ordered_data = [None for i in range(len(all_data))]
|
131 |
+
ordered_masks = [None for i in range(len(all_data))]
|
132 |
+
ordered_labels = [None for i in range(len(all_data))]
|
133 |
+
ordered_transforms = [None for i in range(len(all_data))]
|
134 |
+
|
135 |
+
|
136 |
+
for i, ind in enumerate(ordering):
|
137 |
+
ordered_data[i] = all_data[ind]
|
138 |
+
ordered_masks[i] = all_masks[ind]
|
139 |
+
ordered_labels[i] = all_labels[ind]
|
140 |
+
ordered_transforms[i] = all_transforms[ind]
|
141 |
+
|
142 |
+
batched_data=[]
|
143 |
+
batched_mask=[]
|
144 |
+
batched_labels=[]
|
145 |
+
batched_transforms=[]
|
146 |
+
|
147 |
+
i=0
|
148 |
+
current_batch=max_batch
|
149 |
+
|
150 |
+
while i < len(ordered_data):
|
151 |
+
|
152 |
+
batch_data=ordered_data[i:i+current_batch]
|
153 |
+
batch_mask=ordered_masks[i:i+current_batch]
|
154 |
+
batch_labels=ordered_labels[i:i+current_batch]
|
155 |
+
batch_transforms=ordered_transforms[i:i+current_batch]
|
156 |
+
|
157 |
+
max_len = max([len(sent) for sent in batch_data])
|
158 |
+
max_label = max([len(label) for label in batch_labels])
|
159 |
+
|
160 |
+
for j in range(len(batch_data)):
|
161 |
+
|
162 |
+
blen=len(batch_data[j])
|
163 |
+
blab=len(batch_labels[j])
|
164 |
+
|
165 |
+
for k in range(blen, max_len):
|
166 |
+
batch_data[j].append(0)
|
167 |
+
batch_mask[j].append(0)
|
168 |
+
for z in range(len(batch_transforms[j])):
|
169 |
+
batch_transforms[j][z].append(0)
|
170 |
+
|
171 |
+
for k in range(blab, max_label):
|
172 |
+
batch_labels[j].append(-100)
|
173 |
+
|
174 |
+
for k in range(len(batch_transforms[j]), max_label):
|
175 |
+
batch_transforms[j].append(np.zeros(max_len))
|
176 |
+
|
177 |
+
batched_data.append(batch_data)
|
178 |
+
batched_mask.append(batch_mask)
|
179 |
+
batched_labels.append(batch_labels)
|
180 |
+
batched_transforms.append(batch_transforms)
|
181 |
+
|
182 |
+
#bsize=torch.FloatTensor(batch_transforms).shape
|
183 |
+
|
184 |
+
i+=current_batch
|
185 |
+
|
186 |
+
# adjust batch size; sentences are ordered from shortest to longest so decrease as they get longer
|
187 |
+
if max_len > 100:
|
188 |
+
current_batch=12
|
189 |
+
if max_len > 200:
|
190 |
+
current_batch=6
|
191 |
+
|
192 |
+
#print(len(batch_data), len(batch_mask), len(batch_transforms))
|
193 |
+
return torch.LongTensor(batched_data).squeeze(), torch.FloatTensor(batched_mask).squeeze(), torch.FloatTensor(batched_transforms).squeeze()
|
194 |
+
|
195 |
+
'''
|
196 |
+
|
197 |
+
def _tokenize(self, text):
|
198 |
+
if not isinstance(text, list):
|
199 |
+
text = [text]
|
200 |
+
|
201 |
+
outputs = []
|
202 |
+
for sentence in text:
|
203 |
+
tokens = sentence.split(" ")
|
204 |
+
wp_tokens = []
|
205 |
+
for token in tokens:
|
206 |
+
if token in ["[PAD]", "[UNK]", "[CLS]", "[SEP]", "[MASK]"]:
|
207 |
+
wp_tokens.append(token)
|
208 |
+
else:
|
209 |
+
wp_toks = self.encoder.encode(token)
|
210 |
+
for wp in wp_toks:
|
211 |
+
wp_tokens.append(self.reverseVocab[wp + 5])
|
212 |
+
|
213 |
+
outputs.append(SimpleNamespace(
|
214 |
+
tokens=wp_tokens,
|
215 |
+
ids=torch.Tensor(self.convert_tokens_to_ids(wp_tokens))
|
216 |
+
))
|
217 |
+
return outputs
|
218 |
+
|
219 |
+
'''
|
220 |
+
|
221 |
+
def _tokenize(self, text):
|
222 |
+
tokens = text.split(" ")
|
223 |
+
wp_tokens = []
|
224 |
+
for token in tokens:
|
225 |
+
|
226 |
+
if token in {"[PAD]", "[UNK]", "[CLS]", "[SEP]", "[MASK]"}:
|
227 |
+
wp_tokens.append(token)
|
228 |
+
else:
|
229 |
+
|
230 |
+
wp_toks = self.encoder.encode(token)
|
231 |
+
|
232 |
+
for wp in wp_toks:
|
233 |
+
wp_tokens.append(self.reverseVocab[wp + 5])
|
234 |
+
#print(wp_tokens)
|
235 |
+
return wp_tokens
|
236 |
+
|
237 |
+
def main():
|
238 |
+
model = LatinBERT("../../latinBert/latin_bert/models/latin_bert", tokenizerPath="./tokenizer/latin.subword.encoder")
|
239 |
+
|
240 |
+
sents = ["arma virumque cano", "arma gravi numero violentaque bella parabam"]
|
241 |
+
|
242 |
+
|
243 |
+
output = model(sents)
|
244 |
+
print("end", output.shape)
|
245 |
+
|
246 |
+
if __name__ == "__main__":
|
247 |
+
main()
|
embedders/__pycache__/LatinBERT.cpython-39.pyc
ADDED
Binary file (5.92 kB). View file
|
|
embedders/__pycache__/labse.cpython-39.pyc
ADDED
Binary file (1.65 kB). View file
|
|
embedders/labse.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import BertModel, BertTokenizerFast
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
def similarity(embeddings_1, embeddings_2):
|
6 |
+
normalized_embeddings_1 = F.normalize(embeddings_1, p=2)
|
7 |
+
normalized_embeddings_2 = F.normalize(embeddings_2, p=2)
|
8 |
+
return torch.matmul(
|
9 |
+
normalized_embeddings_1, normalized_embeddings_2.transpose(0, 1)
|
10 |
+
)
|
11 |
+
|
12 |
+
class LaBSE:
|
13 |
+
def __init__(self):
|
14 |
+
self.tokenizer = BertTokenizerFast.from_pretrained("setu4993/LaBSE")
|
15 |
+
self.model = BertModel.from_pretrained("setu4993/LaBSE")
|
16 |
+
#self.model = self.model.to('cuda')
|
17 |
+
self.model.eval()
|
18 |
+
|
19 |
+
@torch.no_grad()
|
20 |
+
def __call__(self, sentences):
|
21 |
+
if not isinstance(sentences, list):
|
22 |
+
sentences = [sentences]
|
23 |
+
tokens = self.tokenizer(sentences, return_tensors="pt", padding=True)
|
24 |
+
#print(tokens.input_ids.shape, tokens.token_type_ids.shape, tokens.attention_mask.shape)
|
25 |
+
#tokens = tokens.to("cuda")
|
26 |
+
outputs = self.model(**tokens)
|
27 |
+
embeddings = outputs.pooler_output
|
28 |
+
return F.normalize(embeddings, p=2).cpu()#.numpy()
|
29 |
+
|
30 |
+
@property
|
31 |
+
def dim(self):
|
32 |
+
return 768
|
33 |
+
|
34 |
+
if __name__ == "__main__":
|
35 |
+
model = LaBSE()
|
36 |
+
sents = ["arma virumque cano", "arma gravi numero violentaque bella parabam"]
|
37 |
+
|
38 |
+
output = model(sents)
|
39 |
+
print("end", output.shape)
|
embedders/latin_bert/latin_bert/config.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_probs_dropout_prob": 0.1,
|
3 |
+
"directionality": "bidi",
|
4 |
+
"hidden_act": "gelu",
|
5 |
+
"hidden_dropout_prob": 0.1,
|
6 |
+
"hidden_size": 768,
|
7 |
+
"initializer_range": 0.02,
|
8 |
+
"intermediate_size": 3072,
|
9 |
+
"max_position_embeddings": 512,
|
10 |
+
"num_attention_heads": 12,
|
11 |
+
"num_hidden_layers": 12,
|
12 |
+
"pooler_fc_size": 768,
|
13 |
+
"pooler_num_attention_heads": 12,
|
14 |
+
"pooler_num_fc_layers": 3,
|
15 |
+
"pooler_size_per_head": 128,
|
16 |
+
"pooler_type": "first_token_transform",
|
17 |
+
"type_vocab_size": 2,
|
18 |
+
"vocab_size": 32900
|
19 |
+
}
|
embedders/latin_bert/latin_bert/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad931a030dffd79a6cc13eaf5108352418285d3a04b510cc70b41fdd609635b5
|
3 |
+
size 447786794
|
embedders/latin_bert/latin_bert/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
embedders/tokenizer/latin.subword.encoder
ADDED
The diff for this file is too large to render.
See raw diff
|
|