tappyness1 commited on
Commit
471f224
·
1 Parent(s): 1c43051

new charts

Browse files
Files changed (7) hide show
  1. .gitignore +2 -1
  2. app.py +9 -15
  3. env.yml +2 -1
  4. requirements.txt +1 -0
  5. src/basic_plot.py +30 -0
  6. src/map_viz.py +83 -0
  7. svg/snazzy-image-01.svg +0 -0
.gitignore CHANGED
@@ -1,2 +1,3 @@
1
  *.jpg
2
- *.csv
 
 
1
  *.jpg
2
+ *.csv
3
+ __pycache__
app.py CHANGED
@@ -3,16 +3,8 @@ import pandas as pd
3
  import plotly.express as px
4
  from datasets import load_dataset
5
  import os
6
-
7
- # @st.cache()
8
- def bar_chart(counts_df):
9
- fig = px.bar(counts_df, x = 'car', y = 'large_vehicle')
10
-
11
- # fig_app_by_arc.update_layout(
12
- # xaxis_title="Name",
13
- # yaxis_title="",
14
- # )
15
- return fig
16
 
17
  def daily_average(counts_df):
18
 
@@ -55,13 +47,15 @@ def main():
55
  )
56
 
57
  # Select Plot Option
58
- st.sidebar.markdown("Checkboxes")
59
- checkbox_one = st.sidebar.checkbox('Lorem Ip', value = True) # rename as necessary
60
- checkbox_two = st.sidebar.checkbox('Lorem Ipsum', value = False)
61
 
62
  if checkbox_one:
63
- st.write("Simple Bar Chart")
64
- st.plotly_chart(bar_chart(counts_df),use_container_width=True)
 
 
65
 
66
  if __name__ == "__main__":
67
  main()
 
3
  import plotly.express as px
4
  from datasets import load_dataset
5
  import os
6
+ from src.basic_plot import basic_chart
7
+ from src.map_viz import calling_map_viz
 
 
 
 
 
 
 
 
8
 
9
  def daily_average(counts_df):
10
 
 
47
  )
48
 
49
  # Select Plot Option
50
+ st.sidebar.markdown("Select Plots to show")
51
+ checkbox_one = st.sidebar.checkbox('Overall Traffic', value = True) # rename as necessary
52
+ checkbox_two = st.sidebar.checkbox('Traffic Map', value = True)
53
 
54
  if checkbox_one:
55
+ st.plotly_chart(basic_chart(counts_df),use_container_width=True)
56
+
57
+ if checkbox_two:
58
+ st.pyplot(calling_map_viz(counts_df))
59
 
60
  if __name__ == "__main__":
61
  main()
env.yml CHANGED
@@ -6,4 +6,5 @@ dependencies:
6
  - datasets>=2.8.0
7
  - pandas=1.5.3
8
  - plotly=5.13.0
9
- - streamlit=1.18.1
 
 
6
  - datasets>=2.8.0
7
  - pandas=1.5.3
8
  - plotly=5.13.0
9
+ - streamlit=1.18.1
10
+ - svgpath2mpl=1.0.0
requirements.txt CHANGED
@@ -1,3 +1,4 @@
1
  pandas
2
  plotly
3
  datasets
 
 
1
  pandas
2
  plotly
3
  datasets
4
+ svgpath2mpl
src/basic_plot.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import plotly.express as px
4
+ from datasets import load_dataset
5
+ import os
6
+
7
+
8
+ def basic_chart(counts_df):
9
+ # data processing
10
+ counts_df['traffic'] = counts_df['car'] + counts_df['motorcycle'] + counts_df['large_vehicle']
11
+ counts_df['datetime'] = pd.to_datetime(counts_df['date'] + ' ' + counts_df['time'])
12
+ counts_df['weekday'] = counts_df['datetime'].dt.strftime('%A')
13
+ counts_df['hour'] = counts_df['datetime'].dt.strftime('%H')
14
+
15
+ # plot types
16
+ plot = st.sidebar.selectbox('Choose Plot', options=['Day','Hour','Raw'])
17
+
18
+ # view types
19
+ view = st.sidebar.selectbox('Choose View', options=counts_df['view'].unique())
20
+ filtered_views = counts_df[counts_df['view'] == view]
21
+
22
+ # conditional views
23
+ if plot == 'Day':
24
+ fig = px.bar(filtered_views, x='weekday', y='traffic')
25
+ elif plot == 'Hour':
26
+ fig = px.bar(filtered_views, x='hour', y='traffic')
27
+ elif plot == 'Raw':
28
+ fig = px.bar(filtered_views, x='datetime', y='traffic')
29
+
30
+ return fig
src/map_viz.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import division, print_function
2
+ from six import StringIO
3
+ from svgpath2mpl import parse_path
4
+ from collections import defaultdict
5
+ import xml.etree.ElementTree as etree
6
+ import re
7
+ import matplotlib as mpl
8
+ import matplotlib.pyplot as plt
9
+ import numpy as np
10
+ import requests
11
+ import pandas as pd
12
+
13
+
14
+ def calling_map_viz(counts_df):
15
+ r = "svg/snazzy-image-01.svg"
16
+ tree = etree.parse(r)
17
+ root = tree.getroot()
18
+ path_elems = root.findall('.//{http://www.w3.org/2000/svg}path')
19
+
20
+ paths = [parse_path(elem.attrib['d']) for elem in path_elems]
21
+ facecolors = []
22
+ edgecolors = []
23
+ linewidths = []
24
+ for elem in path_elems:
25
+ facecolors.append(dict(item.split(":") for item in elem.attrib.get('style', 'none').split(";")).get("fill", "none"))
26
+ edgecolors.append(dict(item.split(":") for item in elem.attrib.get('style', 'none').split(";")).get("stroke", "none"))
27
+ linewidths.append(dict(item.split(":") for item in elem.attrib.get('style', 'none').split(";")).get("stroke-width", "none").replace("px", ""))
28
+
29
+ path_id = defaultdict(int)
30
+ for i, elem in enumerate(path_elems):
31
+ try:
32
+ #print(i, elem.attrib['id'])
33
+ path_id[elem.attrib['id']] = i
34
+ except:
35
+ continue
36
+
37
+
38
+ # counts_df = pd.read_csv("counts_dataset.csv")
39
+ counts_df['total'] = counts_df['car'] + counts_df['motorcycle'] + counts_df['large_vehicle']
40
+ count_max = counts_df['total'].max()
41
+ count_min = counts_df['total'].min()
42
+ last_date = counts_df.iloc[-1:,0].values[0]
43
+ last_time = counts_df.iloc[-1:,1].values[0]
44
+
45
+
46
+ count_dict = {"woodlands_to_sg" :counts_df.loc[counts_df['view'].str.contains(r'''Woodlands([a-zA-Z0-9_.+-]+)sg''') & (counts_df['date'] == last_date) & (counts_df['time'] == last_time), "total" ].sum(),
47
+ "woodlands_to_jh" :counts_df.loc[counts_df['view'].str.contains(r'''Woodlands([a-zA-Z0-9_.+-]+)jh''') & (counts_df['date'] == last_date) & (counts_df['time'] == last_time), "total" ].sum(),
48
+ "tuas_to_sg" :counts_df.loc[counts_df['view'].str.contains(r'''Tuas([a-zA-Z0-9_.+-]+)sg''') & (counts_df['date'] == last_date) & (counts_df['time'] == last_time), "total" ].sum(),
49
+ "tuas_to_jh" :counts_df.loc[counts_df['view'].str.contains(r'''Tuas([a-zA-Z0-9_.+-]+)jh''') & (counts_df['date'] == last_date) & (counts_df['time'] == last_time), "total" ].sum()
50
+ }
51
+
52
+ values = np.array([0., 0.5, 1.])
53
+ values = np.sort(np.array(values))
54
+ values = np.interp(values, (values.min(), values.max()), (0., 1.))
55
+ colors = ["#539f6b", "#ffc835", "#bf0000"]
56
+ cmap = mpl.colors.LinearSegmentedColormap.from_list("custom", list(zip(values, colors)))
57
+
58
+ norm = mpl.colors.Normalize(vmin=count_min, vmax=count_max)
59
+
60
+ hex_dict = {k: mpl.colors.to_hex(cmap(norm(v))) for k, v in count_dict.items()}
61
+ color_dict = defaultdict(str)
62
+
63
+ for k, i in path_id.items():
64
+ color_dict[i] = hex_dict[k]
65
+
66
+ for k, i in color_dict.items():
67
+ #print(k,i)
68
+ facecolors[k] = i
69
+
70
+ collection = mpl.collections.PathCollection(paths,
71
+ edgecolors=edgecolors,
72
+ linewidths=[int(i)/100 for i in linewidths if i != 'none'],
73
+ facecolors=[i.strip() for i in facecolors])
74
+
75
+
76
+
77
+ fig = plt.figure(figsize=(10,10))
78
+ ax = fig.add_subplot(111)
79
+ collection.set_transform(ax.transData)
80
+ ax.add_artist(collection)
81
+ ax.set_xlim([100, 1900])
82
+ ax.set_ylim([1800, 0])
83
+ return fig
svg/snazzy-image-01.svg ADDED