Spaces:
Running
Running
import json | |
import logging | |
import os | |
from collections import defaultdict | |
from typing import Dict, List, Tuple | |
import mols2grid | |
import pandas as pd | |
from gt4sd.algorithms import ( | |
RegressionTransformerMolecules, | |
RegressionTransformerProteins, | |
) | |
from gt4sd.algorithms.core import AlgorithmConfiguration | |
from rdkit import Chem | |
from terminator.selfies import decoder | |
logger = logging.getLogger(__name__) | |
logger.addHandler(logging.NullHandler()) | |
def get_application(application: str) -> AlgorithmConfiguration: | |
""" | |
Convert application name to AlgorithmConfiguration. | |
Args: | |
application: Molecules or Proteins | |
Returns: | |
The corresponding AlgorithmConfiguration | |
""" | |
if application == "Molecules": | |
application = RegressionTransformerMolecules | |
elif application == "Proteins": | |
application = RegressionTransformerProteins | |
else: | |
raise ValueError( | |
"Currently only models for molecules and proteins are supported" | |
) | |
return application | |
def get_inference_dict( | |
application: AlgorithmConfiguration, algorithm_version: str | |
) -> Dict: | |
""" | |
Get inference dictionary for a given application and algorithm version. | |
Args: | |
application: algorithm application (Molecules or Proteins) | |
algorithm_version: algorithm version (e.g. qed) | |
Returns: | |
A dictionary with the inference parameters. | |
""" | |
config = application(algorithm_version=algorithm_version) | |
with open(os.path.join(config.ensure_artifacts(), "inference.json"), "r") as f: | |
data = json.load(f) | |
return data | |
def get_rt_name(x: Dict) -> str: | |
""" | |
Get the UI display name of the regression transformer. | |
Args: | |
x: dictionary with the inference parameters | |
Returns: | |
The display name | |
""" | |
return ( | |
x["algorithm_application"].split("Transformer")[-1] | |
+ ": " | |
+ x["algorithm_version"].capitalize() | |
) | |
def draw_grid_predict(prediction: str, target: str, domain: str) -> str: | |
""" | |
Uses mols2grid to draw a HTML grid for the prediction | |
Args: | |
prediction: Predicted sequence. | |
target: Target molecule | |
domain: Domain of the prediction (molecules or proteins) | |
Returns: | |
HTML to display | |
""" | |
if domain not in ["Molecules", "Proteins"]: | |
raise ValueError(f"Unsupported domain {domain}") | |
seq = target.split("|")[-1] | |
converter = ( | |
decoder | |
if domain == "Molecules" | |
else lambda x: Chem.MolToSmiles(Chem.MolFromFASTA(x)) | |
) | |
try: | |
seq = converter(seq) | |
except Exception: | |
logger.warning(f"Could not draw sequence {seq}") | |
result = {"SMILES": [seq], "Name": ["Target"]} | |
# Add properties | |
for prop in prediction.split("<")[1:]: | |
result[ | |
prop.split(">")[0] | |
] = f"{prop.split('>')[0].capitalize()} = {prop.split('>')[1]}" | |
result_df = pd.DataFrame(result) | |
obj = mols2grid.display( | |
result_df, | |
tooltip=list(result.keys()), | |
height=900, | |
n_cols=1, | |
name="Results", | |
size=(600, 700), | |
) | |
return obj.data | |
def draw_grid_generate( | |
samples: List[Tuple[str]], domain: str, n_cols: int = 5, size=(140, 200) | |
) -> str: | |
""" | |
Uses mols2grid to draw a HTML grid for the generated molecules | |
Args: | |
samples: The generated samples (with properties) | |
domain: Domain of the prediction (molecules or proteins) | |
n_cols: Number of columns in grid. Defaults to 5. | |
size: Size of molecule in grid. Defaults to (140, 200). | |
Returns: | |
HTML to display | |
""" | |
if domain not in ["Molecules", "Proteins"]: | |
raise ValueError(f"Unsupported domain {domain}") | |
if domain == "Proteins": | |
try: | |
smis = list( | |
map(lambda x: Chem.MolToSmiles(Chem.MolFromFASTA(x[0])), samples) | |
) | |
except Exception: | |
logger.warning(f"Could not convert some sequences {samples}") | |
else: | |
smis = [s[0] for s in samples] | |
result = defaultdict(list) | |
result.update({"SMILES": smis, "Name": [f"sample_{i}" for i in range(len(smis))]}) | |
# Create properties | |
properties = [s.split("<")[1] for s in samples[0][1].split(">")[:-1]] | |
# Fill properties | |
for sample in samples: | |
for prop in properties: | |
value = float(sample[1].split(prop)[-1][1:].split("<")[0]) | |
result[prop].append(f"{prop} = {value}") | |
result_df = pd.DataFrame(result) | |
obj = mols2grid.display( | |
result_df, | |
tooltip=list(result.keys()), | |
height=1100, | |
n_cols=n_cols, | |
name="Results", | |
size=size, | |
) | |
return obj.data | |