Spaces:
Sleeping
Sleeping
| import logging | |
| import pathlib | |
| import gradio as gr | |
| import numpy as np | |
| import pandas as pd | |
| from gt4sd.properties.proteins import PROTEIN_PROPERTY_PREDICTOR_FACTORY | |
| from utils import draw_grid_predict | |
| logger = logging.getLogger(__name__) | |
| logger.addHandler(logging.NullHandler()) | |
| AMIDE_FNS = ["protein_weight", "charge", "charge_density", "isoelectric_point"] | |
| PH_FNS = ["charge", "charge_density", "isoelectric_point"] | |
| def main(property: str, seq: str, seq_file: str, amide: bool, ph: float): | |
| prop_name = property.lower() | |
| algo, config = PROTEIN_PROPERTY_PREDICTOR_FACTORY[prop_name] | |
| # Pass hyperparameters if applicable | |
| kwargs = {} | |
| if prop_name in AMIDE_FNS: | |
| kwargs["amide"] = amide | |
| if prop_name in PH_FNS: | |
| kwargs["ph"] = ph | |
| model = algo(config(**kwargs)) | |
| # Read and parse data | |
| if seq != "" and seq_file is not None: | |
| raise ValueError("Pass either smiles or seq_file, not both.") | |
| elif seq != "": | |
| seqs = [seq] | |
| elif seq_file is not None: | |
| seqs = pd.read_csv(seq_file.name, header=None, sep="\t")[0].tolist() | |
| props = np.array(list(map(model, seqs))).round(2) | |
| # Expand to 2D array if needed | |
| if len(props.shape) == 1: | |
| props = np.expand_dims(np.array(props), -1) | |
| return draw_grid_predict(seqs, props, property_names=[property], domain="Proteins") | |
| if __name__ == "__main__": | |
| # Preparation (retrieve all available algorithms) | |
| properties = list(PROTEIN_PROPERTY_PREDICTOR_FACTORY.keys())[::-1] | |
| properties = list(map(lambda x: x.capitalize(), properties)) | |
| # Load metadata | |
| metadata_root = pathlib.Path(__file__).parent.joinpath("model_cards") | |
| examples = [ | |
| ["Aliphaticity", "", str(metadata_root.joinpath("examples.smi")), False, 7], | |
| ["Isoelectric_point", "KFLIYQMECSTMIFGL", None, False, 7], | |
| ["Charge", "KFLIYQMECSTMIFGL", None, True, 12], | |
| ] | |
| with open(metadata_root.joinpath("article.md"), "r") as f: | |
| article = f.read() | |
| with open(metadata_root.joinpath("description.md"), "r") as f: | |
| description = f.read() | |
| demo = gr.Interface( | |
| fn=main, | |
| title="Protein properties", | |
| inputs=[ | |
| gr.Dropdown(properties, label="Property", value="Instability"), | |
| gr.Textbox( | |
| label="Single Protein sequence", placeholder="KFLIYQMECSTMIFGL", lines=1 | |
| ), | |
| gr.File(file_types=[".smi"], label="One AAS per line"), | |
| gr.Radio(choices=[True, False], label="Amide", value=True), | |
| gr.Slider(minimum=0, maximum=14, value=7, label="pH"), | |
| ], | |
| outputs=gr.HTML(label="Output"), | |
| article=article, | |
| description=description, | |
| examples=examples, | |
| ) | |
| demo.launch(debug=True, show_error=True) | |