Spaces:
Running
Running
import logging | |
import pathlib | |
import gradio as gr | |
import numpy as np | |
import pandas as pd | |
from gt4sd.properties.proteins import PROTEIN_PROPERTY_PREDICTOR_FACTORY | |
from utils import draw_grid_predict | |
logger = logging.getLogger(__name__) | |
logger.addHandler(logging.NullHandler()) | |
AMIDE_FNS = ["protein_weight", "charge", "charge_density", "isoelectric_point"] | |
PH_FNS = ["charge", "charge_density", "isoelectric_point"] | |
def main(property: str, seq: str, seq_file: str, amide: bool, ph: float): | |
print("Property", property, "Seq", seq, "seq_file", seq_file) | |
prop_name = property.lower() | |
algo, config = PROTEIN_PROPERTY_PREDICTOR_FACTORY[prop_name] | |
# Pass hyperparameters if applicable | |
kwargs = {} | |
if prop_name in AMIDE_FNS: | |
kwargs["amide"] = amide | |
if prop_name in PH_FNS: | |
kwargs["ph"] = ph | |
model = algo(config(**kwargs)) | |
# Read and parse data | |
if seq != "" and seq_file is not None: | |
raise ValueError("Pass either smiles or seq_file, not both.") | |
elif seq != "": | |
seqs = [seq] | |
elif seq_file is not None: | |
seqs = pd.read_csv(seq_file.name, header=None, sep="\t")[0].tolist() | |
props = np.array(list(map(model, seqs))).round(2) | |
# Expand to 2D array if needed | |
if len(props.shape) == 1: | |
props = np.expand_dims(np.array(props), -1) | |
return draw_grid_predict(seqs, props, property_names=[property], domain="Proteins") | |
if __name__ == "__main__": | |
# Preparation (retrieve all available algorithms) | |
properties = list(PROTEIN_PROPERTY_PREDICTOR_FACTORY.keys())[::-1] | |
properties = list(map(lambda x: x.capitalize(), properties)) | |
# Load metadata | |
metadata_root = pathlib.Path(__file__).parent.joinpath("model_cards") | |
examples = [ | |
["Aliphaticity", "", metadata_root.joinpath("examples.smi"), False, 7], | |
["Isoelectric_point", "KFLIYQMECSTMIFGL", None, False, 7], | |
["Charge", "KFLIYQMECSTMIFGL", None, True, 12], | |
] | |
with open(metadata_root.joinpath("article.md"), "r") as f: | |
article = f.read() | |
with open(metadata_root.joinpath("description.md"), "r") as f: | |
description = f.read() | |
demo = gr.Interface( | |
fn=main, | |
title="Protein properties", | |
inputs=[ | |
gr.Dropdown(properties, label="Property", value="Instability"), | |
gr.Textbox( | |
label="Single Protein sequence", placeholder="KFLIYQMECSTMIFGL", lines=1 | |
), | |
gr.File(file_types=[".smi"], label="One AAS per line"), | |
gr.Radio(choices=[True, False], label="Amide", value=True), | |
gr.Slider(minimum=0, maximum=14, value=7, label="pH", description="Blub"), | |
], | |
outputs=gr.HTML(label="Output"), | |
article=article, | |
description=description, | |
examples=examples, | |
) | |
demo.launch(debug=True, show_error=True) | |