christofid
commited on
Commit
•
7198503
1
Parent(s):
bf1c57e
Update app.py
Browse files
app.py
CHANGED
@@ -3,70 +3,45 @@ import pathlib
|
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
5 |
from gt4sd.algorithms.generation.hugging_face import (
|
6 |
-
|
7 |
-
HuggingFaceGenerationAlgorithm
|
8 |
-
HuggingFaceGPT2Generator,
|
9 |
-
HuggingFaceTransfoXLGenerator,
|
10 |
-
HuggingFaceOpenAIGPTGenerator,
|
11 |
-
HuggingFaceXLMGenerator,
|
12 |
-
HuggingFaceXLNetGenerator,
|
13 |
)
|
14 |
-
from
|
15 |
-
|
16 |
|
17 |
logger = logging.getLogger(__name__)
|
18 |
logger.addHandler(logging.NullHandler())
|
19 |
|
20 |
-
MODEL_FN = {
|
21 |
-
"HuggingFaceCTRLGenerator": HuggingFaceCTRLGenerator,
|
22 |
-
"HuggingFaceGPT2Generator": HuggingFaceGPT2Generator,
|
23 |
-
"HuggingFaceTransfoXLGenerator": HuggingFaceTransfoXLGenerator,
|
24 |
-
"HuggingFaceOpenAIGPTGenerator": HuggingFaceOpenAIGPTGenerator,
|
25 |
-
"HuggingFaceXLMGenerator": HuggingFaceXLMGenerator,
|
26 |
-
"HuggingFaceXLNetGenerator": HuggingFaceXLNetGenerator,
|
27 |
-
}
|
28 |
-
|
29 |
-
|
30 |
def run_inference(
|
31 |
-
|
32 |
-
prompt: str,
|
33 |
-
length: float,
|
34 |
-
temperature: float,
|
35 |
prefix: str,
|
36 |
-
|
37 |
-
|
38 |
-
repetition_penalty: float,
|
39 |
):
|
40 |
-
model = model_type.split("_")[0]
|
41 |
-
version = model_type.split("_")[1]
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
config = MODEL_FN[model](
|
46 |
-
algorithm_version=version,
|
47 |
-
prompt=prompt,
|
48 |
-
length=length,
|
49 |
-
temperature=temperature,
|
50 |
-
repetition_penalty=repetition_penalty,
|
51 |
-
k=k,
|
52 |
-
p=p,
|
53 |
prefix=prefix,
|
|
|
|
|
54 |
)
|
55 |
|
56 |
model = HuggingFaceGenerationAlgorithm(config)
|
|
|
|
|
57 |
text = list(model.sample(1))[0]
|
58 |
|
|
|
|
|
|
|
|
|
59 |
return text
|
60 |
|
61 |
|
62 |
if __name__ == "__main__":
|
63 |
|
64 |
# Preparation (retrieve all available algorithms)
|
65 |
-
|
66 |
-
|
67 |
-
x["algorithm_application"] + "_" + x["algorithm_version"]
|
68 |
-
for x in list(filter(lambda x: "HuggingFace" in x["algorithm_name"], all_algos))
|
69 |
-
]
|
70 |
|
71 |
# Load metadata
|
72 |
metadata_root = pathlib.Path(__file__).parent.joinpath("model_cards")
|
@@ -83,28 +58,22 @@ if __name__ == "__main__":
|
|
83 |
|
84 |
demo = gr.Interface(
|
85 |
fn=run_inference,
|
86 |
-
title="
|
87 |
inputs=[
|
88 |
gr.Dropdown(
|
89 |
-
|
90 |
label="Language model",
|
91 |
-
value="
|
|
|
|
|
|
|
92 |
),
|
93 |
gr.Textbox(
|
94 |
label="Text prompt",
|
95 |
placeholder="I'm a stochastic parrot.",
|
96 |
lines=1,
|
97 |
),
|
98 |
-
gr.Slider(minimum=
|
99 |
-
gr.Slider(
|
100 |
-
minimum=0.6, maximum=1.5, value=1.1, label="Decoding temperature"
|
101 |
-
),
|
102 |
-
gr.Textbox(
|
103 |
-
label="Prefix", placeholder="Some prefix (before the prompt)", lines=1
|
104 |
-
),
|
105 |
-
gr.Slider(minimum=2, maximum=500, value=50, label="Top-k", step=1),
|
106 |
-
gr.Slider(minimum=0.5, maximum=1, value=1.0, label="Decoding-p", step=1),
|
107 |
-
gr.Slider(minimum=0.5, maximum=5, value=1.0, label="Repetition penalty"),
|
108 |
],
|
109 |
outputs=gr.Textbox(label="Output"),
|
110 |
article=article,
|
|
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
5 |
from gt4sd.algorithms.generation.hugging_face import (
|
6 |
+
HuggingFaceSeq2SeqGenerator,
|
7 |
+
HuggingFaceGenerationAlgorithm
|
|
|
|
|
|
|
|
|
|
|
8 |
)
|
9 |
+
from transformers import AutoTokenizer
|
|
|
10 |
|
11 |
logger = logging.getLogger(__name__)
|
12 |
logger.addHandler(logging.NullHandler())
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
def run_inference(
|
15 |
+
model_name_or_path: str,
|
|
|
|
|
|
|
16 |
prefix: str,
|
17 |
+
prompt: str,
|
18 |
+
num_beams: int,
|
|
|
19 |
):
|
|
|
|
|
20 |
|
21 |
+
config = HuggingFaceSeq2SeqGenerator(
|
22 |
+
algorithm_version=model_name_or_path,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
prefix=prefix,
|
24 |
+
prompt=prompt,
|
25 |
+
num_beams=num_beams
|
26 |
)
|
27 |
|
28 |
model = HuggingFaceGenerationAlgorithm(config)
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained("t5-small")
|
30 |
+
|
31 |
text = list(model.sample(1))[0]
|
32 |
|
33 |
+
text = text.split(tokenizer.eos_token)[0]
|
34 |
+
text = text.replace(tokenizer.pad_token, "")
|
35 |
+
text = text.strip()
|
36 |
+
|
37 |
return text
|
38 |
|
39 |
|
40 |
if __name__ == "__main__":
|
41 |
|
42 |
# Preparation (retrieve all available algorithms)
|
43 |
+
models = ["text-chem-t5-small-standard", "text-chem-t5-small-augm",
|
44 |
+
"text-chem-t5-base-standard", "text-chem-t5-base-augm"]
|
|
|
|
|
|
|
45 |
|
46 |
# Load metadata
|
47 |
metadata_root = pathlib.Path(__file__).parent.joinpath("model_cards")
|
|
|
58 |
|
59 |
demo = gr.Interface(
|
60 |
fn=run_inference,
|
61 |
+
title="Text-chem-T5 model",
|
62 |
inputs=[
|
63 |
gr.Dropdown(
|
64 |
+
models,
|
65 |
label="Language model",
|
66 |
+
value="text-chem-t5-base-augm",
|
67 |
+
),
|
68 |
+
gr.Textbox(
|
69 |
+
label="Prefix", placeholder="A task-specific prefix", lines=1
|
70 |
),
|
71 |
gr.Textbox(
|
72 |
label="Text prompt",
|
73 |
placeholder="I'm a stochastic parrot.",
|
74 |
lines=1,
|
75 |
),
|
76 |
+
gr.Slider(minimum=1, maximum=50, value=10, label="num_beams", step=1),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
],
|
78 |
outputs=gr.Textbox(label="Output"),
|
79 |
article=article,
|