Spaces:
Runtime error
Runtime error
| import logging | |
| from omegaconf import OmegaConf | |
| import copy | |
| import spacy | |
| import torch | |
| from torch import nn | |
| from torchvision import transforms as T | |
| from torchvision.transforms.functional import InterpolationMode | |
| from transformers import LlamaTokenizer, BertTokenizer, BitsAndBytesConfig | |
| import sys | |
| sys.path.append("./") | |
| from model.knwl_model import KnwlModel, KnwlEncoder | |
| from model.utils import drop_sequence_mask, cat_pad, disabled_train, download_cached_file | |
| from model.eva_vit import create_eva_vit_g | |
| from model.qformer import BertConfig, BertLMHeadModel | |
| from model.llama import LlamaForCausalLM, LlamaConfig | |
| class GPTK(nn.Module): | |
| def __init__( | |
| self, | |
| img_size=224, | |
| drop_path_rate=0, | |
| use_grad_checkpoint=True, | |
| vit_precision="fp16", | |
| num_query_token=32, | |
| llm_model="", | |
| prompt="", | |
| max_txt_len=128, | |
| max_output_txt_len=256, | |
| d_knwl=768, | |
| topk={}, | |
| pc=0.1, | |
| pt=0.1, | |
| pv=0.1 | |
| ): | |
| super().__init__() | |
| self.topk = {k: v for k, v in topk.items() if v > 0} | |
| self.pc = pc | |
| self.pt = pt | |
| self.pv = pv | |
| # LLM | |
| self.llm_tokenizer = LlamaTokenizer.from_pretrained(llm_model, use_fast=False, truncation_side="left") | |
| llm_config = LlamaConfig.from_pretrained(llm_model) | |
| llm_config.gradient_checkpointing = True | |
| llm_config.use_cache = True | |
| quantization_config = BitsAndBytesConfig( | |
| load_in_8bit=True, | |
| llm_int8_threshold=6.0, | |
| llm_int8_has_fp16_weight=False, | |
| bnb_4bit_compute_dtype=torch.float16, | |
| bnb_4bit_use_double_quant=True, | |
| bnb_4bit_quant_type='nf4' | |
| ) | |
| self.llm_model = LlamaForCausalLM.from_pretrained( | |
| llm_model, config=llm_config, torch_dtype=torch.float16, quantization_config=quantization_config | |
| ) | |
| self.llm_tokenizer.add_special_tokens({'pad_token': '[PAD]'}) | |
| self.llm_tokenizer.add_special_tokens({'bos_token': '</s>'}) | |
| self.llm_tokenizer.add_special_tokens({'eos_token': '</s>'}) | |
| self.llm_tokenizer.add_special_tokens({'unk_token': '</s>'}) | |
| self.llm_model.resize_token_embeddings(len(self.llm_tokenizer)) | |
| for name, param in self.llm_model.named_parameters(): | |
| param.requires_grad = False | |
| # ViT image encoder | |
| self.visual_encoder, self.ln_vision = self.init_vision_encoder( | |
| img_size, drop_path_rate, use_grad_checkpoint, vit_precision | |
| ) | |
| for name, param in self.visual_encoder.named_parameters(): | |
| param.requires_grad = False | |
| self.visual_encoder = self.visual_encoder.eval() | |
| self.visual_encoder.train = disabled_train | |
| logging.info("freeze vision encoder") | |
| # Q-former | |
| self.tokenizer = self.init_tokenizer(truncation_side="left") | |
| self.Qformer, self.query_tokens = self.init_Qformer( | |
| num_query_token, self.visual_encoder.num_features | |
| ) | |
| self.Qformer.resize_token_embeddings(len(self.tokenizer)) | |
| self.Qformer.cls = None | |
| self.llm_proj = nn.Linear( | |
| self.Qformer.config.hidden_size, self.llm_model.config.hidden_size | |
| ) | |
| # Knowledge modules | |
| if len(self.topk) > 0: # all added modules must contain "knwl" in their names | |
| self.knwl_encoder = KnwlEncoder(self.visual_encoder.num_features) | |
| self.knwl_query = copy.deepcopy(self.query_tokens) | |
| for k in self.topk.keys(): | |
| m = KnwlModel(d_knwl=d_knwl, d_out=self.knwl_encoder.d, pt=pt) | |
| setattr(self, f"knwl_{k}", m) | |
| self.max_txt_len = max_txt_len | |
| self.max_output_txt_len = max_output_txt_len | |
| self.prompt = prompt | |
| prompt_tokens = self.llm_tokenizer(self.prompt, return_tensors="pt") | |
| self.prompt_length = prompt_tokens.attention_mask.sum(1) | |
| def init_tokenizer(cls, truncation_side="right"): | |
| tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", truncation_side=truncation_side) | |
| tokenizer.add_special_tokens({"bos_token": "[DEC]"}) | |
| return tokenizer | |
| def init_Qformer(cls, num_query_token, vision_width, cross_attention_freq=2): | |
| encoder_config = BertConfig.from_pretrained("bert-base-uncased") | |
| encoder_config.encoder_width = vision_width | |
| # insert cross-attention layer every other block | |
| encoder_config.add_cross_attention = True | |
| encoder_config.cross_attention_freq = cross_attention_freq | |
| encoder_config.query_length = num_query_token | |
| logging.disable(logging.CRITICAL) | |
| Qformer = BertLMHeadModel.from_pretrained( | |
| "bert-base-uncased", config=encoder_config | |
| ) | |
| logging.disable(logging.NOTSET) | |
| query_tokens = nn.Parameter( | |
| torch.zeros(1, num_query_token, encoder_config.hidden_size) | |
| ) | |
| query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range) | |
| return Qformer, query_tokens | |
| def init_vision_encoder(cls, img_size, drop_path_rate, use_grad_checkpoint, precision): | |
| visual_encoder = create_eva_vit_g( | |
| img_size, drop_path_rate, use_grad_checkpoint, precision | |
| ) | |
| ln_vision = nn.LayerNorm(visual_encoder.num_features) | |
| return visual_encoder, ln_vision | |
| def concat_text_input_output(self, input_ids, input_atts, output_ids, output_atts): | |
| input_part_targets_len = [] | |
| llm_tokens = {"input_ids": [], "attention_mask": []} | |
| for i in range(input_ids.size(0)): | |
| this_input_ones = input_atts[i].sum() | |
| input_part_targets_len.append(this_input_ones) | |
| llm_tokens['input_ids'].append( | |
| torch.cat([ | |
| input_ids[i][:this_input_ones], | |
| output_ids[i][1:], | |
| input_ids[i][this_input_ones:] | |
| ]) | |
| ) | |
| llm_tokens['attention_mask'].append( | |
| torch.cat([ | |
| input_atts[i][:this_input_ones], | |
| output_atts[i][1:], | |
| input_atts[i][this_input_ones:] | |
| ]) | |
| ) | |
| llm_tokens['input_ids'] = torch.stack(llm_tokens['input_ids']) | |
| llm_tokens['attention_mask'] = torch.stack(llm_tokens['attention_mask']) | |
| return llm_tokens, input_part_targets_len | |
| def forward_qformer(self, image, knowledge, prompt): | |
| views = [] | |
| # knowledge embeds | |
| if len(self.topk) > 0 and knowledge is not None: | |
| embeds, masks = [], [] | |
| for k in knowledge.keys(): | |
| embeds_k, masks_k = getattr(self, f"knwl_{k}")(knowledge[k]) | |
| embeds.append(embeds_k) | |
| masks.append(masks_k) | |
| embeds = cat_pad(embeds, cat_dim=0, pad_dim=1) | |
| masks = cat_pad(masks, cat_dim=0, pad_dim=1) | |
| embeds = self.knwl_encoder( | |
| inputs_embeds=embeds, attention_mask=masks | |
| ) | |
| embeds = nn.functional.dropout( | |
| embeds, p=self.pc, training=self.training | |
| ) | |
| N, (S, d) = len(image), embeds.shape[1:] | |
| embeds = embeds.reshape(-1, N, S, d) | |
| embeds = embeds.transpose(0, 1).flatten(1, 2) | |
| masks = masks.reshape(-1, N, S) | |
| masks = masks.transpose(0, 1).flatten(1, 2) | |
| views.append((embeds, masks, self.knwl_query)) | |
| # image embeds | |
| embeds = self.ln_vision(self.visual_encoder(image)) | |
| embeds = nn.functional.dropout( | |
| embeds, p=self.pc, training=self.training | |
| ) | |
| masks = drop_sequence_mask( | |
| *embeds.shape[:2], image.device, self.pt, self.training | |
| ) | |
| views.append((embeds, masks, self.query_tokens)) | |
| # Qformer forward | |
| text_Qformer = self.tokenizer( | |
| prompt, | |
| padding='longest', | |
| truncation=True, | |
| max_length=self.max_txt_len, | |
| return_tensors="pt", | |
| ).to(image.device) | |
| qfm_embeds, qfm_masks = [], [] | |
| for embeds, masks, query in views: | |
| query = query.expand(image.shape[0], -1, -1) | |
| query_atts = torch.ones(query.size()[:-1], dtype=torch.long).to(embeds.device) | |
| Qformer_atts = torch.cat([query_atts, text_Qformer.attention_mask], dim=1) | |
| query_output = self.Qformer.bert( | |
| text_Qformer.input_ids, | |
| attention_mask=Qformer_atts, | |
| query_embeds=query, | |
| encoder_hidden_states=embeds, | |
| encoder_attention_mask=masks, | |
| return_dict=True, | |
| ) | |
| embeds = self.llm_proj(query_output.last_hidden_state[:, :query.size(1),:]) | |
| masks = torch.ones(embeds.size()[:-1], dtype=torch.long).to(image.device) | |
| qfm_embeds.append(embeds) | |
| qfm_masks.append(masks) | |
| # drop views | |
| if self.training: | |
| view_masks = drop_sequence_mask(len(image), len(qfm_embeds), image.device, self.pv) | |
| qfm_masks = [m * view_masks[:, i:(i+1)] for i, m in enumerate(qfm_masks)] | |
| llm_embeds = torch.cat(qfm_embeds, dim=1) | |
| llm_masks = torch.cat(qfm_masks, dim=1) | |
| return llm_embeds, llm_masks | |
| def forward(self, samples): | |
| inputs_llm, atts_llm = self.forward_qformer( | |
| samples["image"], samples["knowledge"], samples["prompt"] | |
| ) | |
| device = inputs_llm.device | |
| self.llm_tokenizer.padding_side = "right" | |
| self.llm_tokenizer.truncation_side = 'left' | |
| text_input_tokens = self.llm_tokenizer( | |
| samples['prompt'], | |
| return_tensors="pt", | |
| padding="longest", | |
| truncation=True, | |
| max_length=self.max_txt_len, | |
| ).to(device) | |
| self.llm_tokenizer.truncation_side = 'right' | |
| text_output_tokens = self.llm_tokenizer( | |
| [t + self.llm_tokenizer.eos_token for t in samples['output']], | |
| return_tensors="pt", | |
| padding="longest", | |
| truncation=True, | |
| max_length=self.max_output_txt_len, | |
| ).to(device) | |
| llm_tokens, input_part_targets_len = self.concat_text_input_output( | |
| text_input_tokens.input_ids, | |
| text_input_tokens.attention_mask, | |
| text_output_tokens.input_ids, | |
| text_output_tokens.attention_mask, | |
| ) | |
| # do not apply loss to the padding | |
| targets = llm_tokens['input_ids'].masked_fill( | |
| llm_tokens['input_ids'] == self.llm_tokenizer.pad_token_id, -100 | |
| ) | |
| # do not apply loss to the text input (i.e., instruction) | |
| for i, l in enumerate(input_part_targets_len): | |
| targets[i][:l] = -100 | |
| # do not apply loss to the query tokens | |
| empty_targets = ( | |
| torch.ones(atts_llm.size(), dtype=torch.long).to(device).fill_(-100) | |
| ) | |
| targets = torch.cat([empty_targets, targets], dim=1) | |
| inputs_embeds = self.llm_model.get_input_embeddings()(llm_tokens['input_ids']) | |
| inputs_embeds = torch.cat([inputs_llm, inputs_embeds], dim=1) | |
| attention_mask = torch.cat([atts_llm, llm_tokens['attention_mask']], dim=1) | |
| outputs = self.llm_model( | |
| inputs_embeds=inputs_embeds, | |
| attention_mask=attention_mask, | |
| return_dict=True, | |
| labels=targets, | |
| ) | |
| loss = outputs.loss | |
| return loss | |
| def generate( | |
| self, | |
| samples, | |
| use_nucleus_sampling=False, | |
| num_beams=5, | |
| max_length=256, | |
| min_length=1, | |
| top_p=0.9, | |
| repetition_penalty=1.5, | |
| length_penalty=1, | |
| num_captions=1, | |
| temperature=1, | |
| streamer=None, | |
| auto_cast=False | |
| ): | |
| prompt = samples["prompt"] if "prompt" in samples.keys() else self.prompt | |
| if isinstance(prompt, str): | |
| prompt = [prompt] * samples["image"].size(0) | |
| else: | |
| assert len(prompt) == samples["image"].size(0), \ | |
| "The number of prompts must be equal to the batch size." | |
| with torch.cuda.amp.autocast(auto_cast): | |
| inputs_llm, atts_llm = self.forward_qformer( | |
| samples["image"], samples["knowledge"], prompt | |
| ) | |
| device = inputs_llm.device | |
| self.llm_tokenizer.padding_side = "left" | |
| llm_tokens = self.llm_tokenizer( | |
| prompt, | |
| padding="longest", | |
| return_tensors="pt" | |
| ).to(device) | |
| inputs_embeds = self.llm_model.get_input_embeddings()(llm_tokens.input_ids) | |
| inputs_embeds = torch.cat([inputs_llm, inputs_embeds], dim=1) | |
| attention_mask = torch.cat([atts_llm, llm_tokens.attention_mask], dim=1) | |
| outputs = self.llm_model.generate( | |
| inputs_embeds=inputs_embeds, | |
| attention_mask=attention_mask, | |
| do_sample=use_nucleus_sampling, | |
| top_p=top_p, | |
| temperature=temperature, | |
| num_beams=num_beams, | |
| max_length=max_length, | |
| min_length=min_length, | |
| repetition_penalty=repetition_penalty, | |
| length_penalty=length_penalty, | |
| num_return_sequences=num_captions, | |
| streamer=streamer | |
| ) | |
| if streamer is None: | |
| outputs[outputs == 0] = 2 # convert output id 0 to 2 (eos_token_id) | |
| output_text = self.llm_tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
| output_text = [text.strip() for text in output_text] | |
| return output_text | |
| else: | |
| return outputs | |
| def predict_answers( | |
| self, | |
| samples, | |
| num_beams=5, | |
| max_len=10, | |
| min_len=1, | |
| length_penalty=0 | |
| ): | |
| output_text = self.generate( | |
| samples, | |
| num_beams=num_beams, | |
| max_length=max_len, | |
| min_length=min_len, | |
| length_penalty=length_penalty | |
| ) | |
| output_text = self._lemmatize(output_text) | |
| return output_text | |
| def _lemmatize(self, answers): | |
| lemmatizer = spacy.load("en_core_web_sm") | |
| def apply(answer): | |
| doc = lemmatizer(answer) | |
| words = [] | |
| for token in doc: | |
| if token.pos_ in ["NOUN", "VERB"]: | |
| words.append(token.lemma_) | |
| else: | |
| words.append(token.text) | |
| answer = " ".join(words) | |
| return answer | |
| return [apply(answer) for answer in answers] | |
| def from_config(cls, cfg): | |
| llm_model = cfg.get("llm_model") | |
| num_query_token = cfg.get("num_query_token", 32) | |
| img_size = cfg.get("image_size", 224) | |
| drop_path_rate = cfg.get("drop_path_rate", 0) | |
| use_grad_checkpoint = cfg.get("use_grad_checkpoint", True) | |
| vit_precision = cfg.get("vit_precision", "fp16") | |
| prompt = cfg.get("prompt", "") | |
| max_txt_len = cfg.get("max_txt_len", 128) | |
| max_output_txt_len = cfg.get("max_output_txt_len", 256) | |
| d_knwl = cfg.get("d_knwl", 768) | |
| topk = cfg.get("topk", {}) | |
| pc = cfg.get("pc", 0.1) | |
| pt = cfg.get("pt", 0.1) | |
| pv = cfg.get("pv", 0.4) | |
| model = cls( | |
| img_size=img_size, | |
| drop_path_rate=drop_path_rate, | |
| use_grad_checkpoint=use_grad_checkpoint, | |
| vit_precision=vit_precision, | |
| num_query_token=num_query_token, | |
| llm_model=llm_model, | |
| prompt=prompt, | |
| max_txt_len=max_txt_len, | |
| max_output_txt_len=max_output_txt_len, | |
| d_knwl=d_knwl, | |
| topk=topk, | |
| pc=pc, | |
| pt=pt, | |
| pv=pv | |
| ) | |
| pretrain_path = cfg.get("pretrained", None) | |
| assert pretrain_path is not None, "Pretrain_path is None." | |
| cached_file = download_cached_file( | |
| pretrain_path, check_hash=False, progress=True | |
| ) | |
| checkpoint = torch.load(cached_file, map_location="cpu") | |
| state_dict = checkpoint["model"] | |
| model.load_state_dict(state_dict, strict=False) | |
| logging.info("load checkpoint from %s" % pretrain_path) | |
| return model | |
| def get_gptk_image_transform(model_type: str = "gptk-7b"): | |
| assert model_type in ("gptk-7b", "gptk-13b") | |
| model_config = OmegaConf.load(f"model/{model_type}.yaml") | |
| size = model_config.get("image_size", 224) | |
| normalizer = T.Normalize( | |
| mean=(0.48145466, 0.4578275, 0.40821073), | |
| std=(0.26862954, 0.26130258, 0.27577711) | |
| ) | |
| trans_train = T.Compose([ | |
| T.RandomResizedCrop( | |
| size=(size, size), scale=(0.5, 1.0), | |
| interpolation=InterpolationMode.BICUBIC, | |
| ), | |
| T.RandomHorizontalFlip(), | |
| T.ToTensor(), | |
| normalizer | |
| ]) | |
| trans_val = T.Compose([ | |
| T.Resize( | |
| size=(size, size), interpolation=InterpolationMode.BICUBIC, | |
| ), | |
| T.RandomHorizontalFlip(), | |
| T.ToTensor(), | |
| normalizer | |
| ]) | |
| return trans_train, trans_val | |
| def get_gptk_model( | |
| model_type: str = "gptk-7b", | |
| d_knwl: int = 768, | |
| topk: dict = {"whole": 0, "five": 0, "nine": 0}, | |
| pc: float = 0.1, pt: float = 0.1, pv: float = 0.4 | |
| ): | |
| assert model_type in ("gptk-7b", "gptk-13b") | |
| model_config = OmegaConf.load(f"model/{model_type}.yaml") | |
| model_config.pv = pv | |
| model_config.pt = pt | |
| model_config.pc = pc | |
| model_config.topk = {k: v for k, v in topk.items() if v > 0} | |
| model_config.d_knwl = d_knwl | |
| model = GPTK.from_config(model_config) | |
| if sum(topk.values()) > 0: | |
| model.knwl_query.data.copy_(model.query_tokens.data.clone().detach()) | |
| return model | |