Spaces:
Runtime error
Runtime error
import logging | |
from omegaconf import OmegaConf | |
import copy | |
import spacy | |
import torch | |
from torch import nn | |
from torchvision import transforms as T | |
from torchvision.transforms.functional import InterpolationMode | |
from transformers import LlamaTokenizer, BertTokenizer, BitsAndBytesConfig | |
import sys | |
sys.path.append("./") | |
from model.knwl_model import KnwlModel, KnwlEncoder | |
from model.utils import drop_sequence_mask, cat_pad, disabled_train, download_cached_file | |
from model.eva_vit import create_eva_vit_g | |
from model.qformer import BertConfig, BertLMHeadModel | |
from model.llama import LlamaForCausalLM, LlamaConfig | |
class GPTK(nn.Module): | |
def __init__( | |
self, | |
img_size=224, | |
drop_path_rate=0, | |
use_grad_checkpoint=True, | |
vit_precision="fp16", | |
num_query_token=32, | |
llm_model="", | |
prompt="", | |
max_txt_len=128, | |
max_output_txt_len=256, | |
d_knwl=768, | |
topk={}, | |
pc=0.1, | |
pt=0.1, | |
pv=0.1 | |
): | |
super().__init__() | |
self.topk = {k: v for k, v in topk.items() if v > 0} | |
self.pc = pc | |
self.pt = pt | |
self.pv = pv | |
# LLM | |
self.llm_tokenizer = LlamaTokenizer.from_pretrained(llm_model, use_fast=False, truncation_side="left") | |
llm_config = LlamaConfig.from_pretrained(llm_model) | |
llm_config.gradient_checkpointing = True | |
llm_config.use_cache = True | |
quantization_config = BitsAndBytesConfig( | |
load_in_8bit=True, | |
llm_int8_threshold=6.0, | |
llm_int8_has_fp16_weight=False, | |
bnb_4bit_compute_dtype=torch.float16, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type='nf4' | |
) | |
self.llm_model = LlamaForCausalLM.from_pretrained( | |
llm_model, config=llm_config, torch_dtype=torch.float16, quantization_config=quantization_config | |
) | |
self.llm_tokenizer.add_special_tokens({'pad_token': '[PAD]'}) | |
self.llm_tokenizer.add_special_tokens({'bos_token': '</s>'}) | |
self.llm_tokenizer.add_special_tokens({'eos_token': '</s>'}) | |
self.llm_tokenizer.add_special_tokens({'unk_token': '</s>'}) | |
self.llm_model.resize_token_embeddings(len(self.llm_tokenizer)) | |
for name, param in self.llm_model.named_parameters(): | |
param.requires_grad = False | |
# ViT image encoder | |
self.visual_encoder, self.ln_vision = self.init_vision_encoder( | |
img_size, drop_path_rate, use_grad_checkpoint, vit_precision | |
) | |
for name, param in self.visual_encoder.named_parameters(): | |
param.requires_grad = False | |
self.visual_encoder = self.visual_encoder.eval() | |
self.visual_encoder.train = disabled_train | |
logging.info("freeze vision encoder") | |
# Q-former | |
self.tokenizer = self.init_tokenizer(truncation_side="left") | |
self.Qformer, self.query_tokens = self.init_Qformer( | |
num_query_token, self.visual_encoder.num_features | |
) | |
self.Qformer.resize_token_embeddings(len(self.tokenizer)) | |
self.Qformer.cls = None | |
self.llm_proj = nn.Linear( | |
self.Qformer.config.hidden_size, self.llm_model.config.hidden_size | |
) | |
# Knowledge modules | |
if len(self.topk) > 0: # all added modules must contain "knwl" in their names | |
self.knwl_encoder = KnwlEncoder(self.visual_encoder.num_features) | |
self.knwl_query = copy.deepcopy(self.query_tokens) | |
for k in self.topk.keys(): | |
m = KnwlModel(d_knwl=d_knwl, d_out=self.knwl_encoder.d, pt=pt) | |
setattr(self, f"knwl_{k}", m) | |
self.max_txt_len = max_txt_len | |
self.max_output_txt_len = max_output_txt_len | |
self.prompt = prompt | |
prompt_tokens = self.llm_tokenizer(self.prompt, return_tensors="pt") | |
self.prompt_length = prompt_tokens.attention_mask.sum(1) | |
def init_tokenizer(cls, truncation_side="right"): | |
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", truncation_side=truncation_side) | |
tokenizer.add_special_tokens({"bos_token": "[DEC]"}) | |
return tokenizer | |
def init_Qformer(cls, num_query_token, vision_width, cross_attention_freq=2): | |
encoder_config = BertConfig.from_pretrained("bert-base-uncased") | |
encoder_config.encoder_width = vision_width | |
# insert cross-attention layer every other block | |
encoder_config.add_cross_attention = True | |
encoder_config.cross_attention_freq = cross_attention_freq | |
encoder_config.query_length = num_query_token | |
logging.disable(logging.CRITICAL) | |
Qformer = BertLMHeadModel.from_pretrained( | |
"bert-base-uncased", config=encoder_config | |
) | |
logging.disable(logging.NOTSET) | |
query_tokens = nn.Parameter( | |
torch.zeros(1, num_query_token, encoder_config.hidden_size) | |
) | |
query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range) | |
return Qformer, query_tokens | |
def init_vision_encoder(cls, img_size, drop_path_rate, use_grad_checkpoint, precision): | |
visual_encoder = create_eva_vit_g( | |
img_size, drop_path_rate, use_grad_checkpoint, precision | |
) | |
ln_vision = nn.LayerNorm(visual_encoder.num_features) | |
return visual_encoder, ln_vision | |
def concat_text_input_output(self, input_ids, input_atts, output_ids, output_atts): | |
input_part_targets_len = [] | |
llm_tokens = {"input_ids": [], "attention_mask": []} | |
for i in range(input_ids.size(0)): | |
this_input_ones = input_atts[i].sum() | |
input_part_targets_len.append(this_input_ones) | |
llm_tokens['input_ids'].append( | |
torch.cat([ | |
input_ids[i][:this_input_ones], | |
output_ids[i][1:], | |
input_ids[i][this_input_ones:] | |
]) | |
) | |
llm_tokens['attention_mask'].append( | |
torch.cat([ | |
input_atts[i][:this_input_ones], | |
output_atts[i][1:], | |
input_atts[i][this_input_ones:] | |
]) | |
) | |
llm_tokens['input_ids'] = torch.stack(llm_tokens['input_ids']) | |
llm_tokens['attention_mask'] = torch.stack(llm_tokens['attention_mask']) | |
return llm_tokens, input_part_targets_len | |
def forward_qformer(self, image, knowledge, prompt): | |
views = [] | |
# knowledge embeds | |
if len(self.topk) > 0 and knowledge is not None: | |
embeds, masks = [], [] | |
for k in knowledge.keys(): | |
embeds_k, masks_k = getattr(self, f"knwl_{k}")(knowledge[k]) | |
embeds.append(embeds_k) | |
masks.append(masks_k) | |
embeds = cat_pad(embeds, cat_dim=0, pad_dim=1) | |
masks = cat_pad(masks, cat_dim=0, pad_dim=1) | |
embeds = self.knwl_encoder( | |
inputs_embeds=embeds, attention_mask=masks | |
) | |
embeds = nn.functional.dropout( | |
embeds, p=self.pc, training=self.training | |
) | |
N, (S, d) = len(image), embeds.shape[1:] | |
embeds = embeds.reshape(-1, N, S, d) | |
embeds = embeds.transpose(0, 1).flatten(1, 2) | |
masks = masks.reshape(-1, N, S) | |
masks = masks.transpose(0, 1).flatten(1, 2) | |
views.append((embeds, masks, self.knwl_query)) | |
# image embeds | |
embeds = self.ln_vision(self.visual_encoder(image)) | |
embeds = nn.functional.dropout( | |
embeds, p=self.pc, training=self.training | |
) | |
masks = drop_sequence_mask( | |
*embeds.shape[:2], image.device, self.pt, self.training | |
) | |
views.append((embeds, masks, self.query_tokens)) | |
# Qformer forward | |
text_Qformer = self.tokenizer( | |
prompt, | |
padding='longest', | |
truncation=True, | |
max_length=self.max_txt_len, | |
return_tensors="pt", | |
).to(image.device) | |
qfm_embeds, qfm_masks = [], [] | |
for embeds, masks, query in views: | |
query = query.expand(image.shape[0], -1, -1) | |
query_atts = torch.ones(query.size()[:-1], dtype=torch.long).to(embeds.device) | |
Qformer_atts = torch.cat([query_atts, text_Qformer.attention_mask], dim=1) | |
query_output = self.Qformer.bert( | |
text_Qformer.input_ids, | |
attention_mask=Qformer_atts, | |
query_embeds=query, | |
encoder_hidden_states=embeds, | |
encoder_attention_mask=masks, | |
return_dict=True, | |
) | |
embeds = self.llm_proj(query_output.last_hidden_state[:, :query.size(1),:]) | |
masks = torch.ones(embeds.size()[:-1], dtype=torch.long).to(image.device) | |
qfm_embeds.append(embeds) | |
qfm_masks.append(masks) | |
# drop views | |
if self.training: | |
view_masks = drop_sequence_mask(len(image), len(qfm_embeds), image.device, self.pv) | |
qfm_masks = [m * view_masks[:, i:(i+1)] for i, m in enumerate(qfm_masks)] | |
llm_embeds = torch.cat(qfm_embeds, dim=1) | |
llm_masks = torch.cat(qfm_masks, dim=1) | |
return llm_embeds, llm_masks | |
def forward(self, samples): | |
inputs_llm, atts_llm = self.forward_qformer( | |
samples["image"], samples["knowledge"], samples["prompt"] | |
) | |
device = inputs_llm.device | |
self.llm_tokenizer.padding_side = "right" | |
self.llm_tokenizer.truncation_side = 'left' | |
text_input_tokens = self.llm_tokenizer( | |
samples['prompt'], | |
return_tensors="pt", | |
padding="longest", | |
truncation=True, | |
max_length=self.max_txt_len, | |
).to(device) | |
self.llm_tokenizer.truncation_side = 'right' | |
text_output_tokens = self.llm_tokenizer( | |
[t + self.llm_tokenizer.eos_token for t in samples['output']], | |
return_tensors="pt", | |
padding="longest", | |
truncation=True, | |
max_length=self.max_output_txt_len, | |
).to(device) | |
llm_tokens, input_part_targets_len = self.concat_text_input_output( | |
text_input_tokens.input_ids, | |
text_input_tokens.attention_mask, | |
text_output_tokens.input_ids, | |
text_output_tokens.attention_mask, | |
) | |
# do not apply loss to the padding | |
targets = llm_tokens['input_ids'].masked_fill( | |
llm_tokens['input_ids'] == self.llm_tokenizer.pad_token_id, -100 | |
) | |
# do not apply loss to the text input (i.e., instruction) | |
for i, l in enumerate(input_part_targets_len): | |
targets[i][:l] = -100 | |
# do not apply loss to the query tokens | |
empty_targets = ( | |
torch.ones(atts_llm.size(), dtype=torch.long).to(device).fill_(-100) | |
) | |
targets = torch.cat([empty_targets, targets], dim=1) | |
inputs_embeds = self.llm_model.get_input_embeddings()(llm_tokens['input_ids']) | |
inputs_embeds = torch.cat([inputs_llm, inputs_embeds], dim=1) | |
attention_mask = torch.cat([atts_llm, llm_tokens['attention_mask']], dim=1) | |
outputs = self.llm_model( | |
inputs_embeds=inputs_embeds, | |
attention_mask=attention_mask, | |
return_dict=True, | |
labels=targets, | |
) | |
loss = outputs.loss | |
return loss | |
def generate( | |
self, | |
samples, | |
use_nucleus_sampling=False, | |
num_beams=5, | |
max_length=256, | |
min_length=1, | |
top_p=0.9, | |
repetition_penalty=1.5, | |
length_penalty=1, | |
num_captions=1, | |
temperature=1, | |
streamer=None, | |
auto_cast=False | |
): | |
prompt = samples["prompt"] if "prompt" in samples.keys() else self.prompt | |
if isinstance(prompt, str): | |
prompt = [prompt] * samples["image"].size(0) | |
else: | |
assert len(prompt) == samples["image"].size(0), \ | |
"The number of prompts must be equal to the batch size." | |
with torch.cuda.amp.autocast(auto_cast): | |
inputs_llm, atts_llm = self.forward_qformer( | |
samples["image"], samples["knowledge"], prompt | |
) | |
device = inputs_llm.device | |
self.llm_tokenizer.padding_side = "left" | |
llm_tokens = self.llm_tokenizer( | |
prompt, | |
padding="longest", | |
return_tensors="pt" | |
).to(device) | |
inputs_embeds = self.llm_model.get_input_embeddings()(llm_tokens.input_ids) | |
inputs_embeds = torch.cat([inputs_llm, inputs_embeds], dim=1) | |
attention_mask = torch.cat([atts_llm, llm_tokens.attention_mask], dim=1) | |
outputs = self.llm_model.generate( | |
inputs_embeds=inputs_embeds, | |
attention_mask=attention_mask, | |
do_sample=use_nucleus_sampling, | |
top_p=top_p, | |
temperature=temperature, | |
num_beams=num_beams, | |
max_length=max_length, | |
min_length=min_length, | |
repetition_penalty=repetition_penalty, | |
length_penalty=length_penalty, | |
num_return_sequences=num_captions, | |
streamer=streamer | |
) | |
if streamer is None: | |
outputs[outputs == 0] = 2 # convert output id 0 to 2 (eos_token_id) | |
output_text = self.llm_tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
output_text = [text.strip() for text in output_text] | |
return output_text | |
else: | |
return outputs | |
def predict_answers( | |
self, | |
samples, | |
num_beams=5, | |
max_len=10, | |
min_len=1, | |
length_penalty=0 | |
): | |
output_text = self.generate( | |
samples, | |
num_beams=num_beams, | |
max_length=max_len, | |
min_length=min_len, | |
length_penalty=length_penalty | |
) | |
output_text = self._lemmatize(output_text) | |
return output_text | |
def _lemmatize(self, answers): | |
lemmatizer = spacy.load("en_core_web_sm") | |
def apply(answer): | |
doc = lemmatizer(answer) | |
words = [] | |
for token in doc: | |
if token.pos_ in ["NOUN", "VERB"]: | |
words.append(token.lemma_) | |
else: | |
words.append(token.text) | |
answer = " ".join(words) | |
return answer | |
return [apply(answer) for answer in answers] | |
def from_config(cls, cfg): | |
llm_model = cfg.get("llm_model") | |
num_query_token = cfg.get("num_query_token", 32) | |
img_size = cfg.get("image_size", 224) | |
drop_path_rate = cfg.get("drop_path_rate", 0) | |
use_grad_checkpoint = cfg.get("use_grad_checkpoint", True) | |
vit_precision = cfg.get("vit_precision", "fp16") | |
prompt = cfg.get("prompt", "") | |
max_txt_len = cfg.get("max_txt_len", 128) | |
max_output_txt_len = cfg.get("max_output_txt_len", 256) | |
d_knwl = cfg.get("d_knwl", 768) | |
topk = cfg.get("topk", {}) | |
pc = cfg.get("pc", 0.1) | |
pt = cfg.get("pt", 0.1) | |
pv = cfg.get("pv", 0.4) | |
model = cls( | |
img_size=img_size, | |
drop_path_rate=drop_path_rate, | |
use_grad_checkpoint=use_grad_checkpoint, | |
vit_precision=vit_precision, | |
num_query_token=num_query_token, | |
llm_model=llm_model, | |
prompt=prompt, | |
max_txt_len=max_txt_len, | |
max_output_txt_len=max_output_txt_len, | |
d_knwl=d_knwl, | |
topk=topk, | |
pc=pc, | |
pt=pt, | |
pv=pv | |
) | |
pretrain_path = cfg.get("pretrained", None) | |
assert pretrain_path is not None, "Pretrain_path is None." | |
cached_file = download_cached_file( | |
pretrain_path, check_hash=False, progress=True | |
) | |
checkpoint = torch.load(cached_file, map_location="cpu") | |
state_dict = checkpoint["model"] | |
model.load_state_dict(state_dict, strict=False) | |
logging.info("load checkpoint from %s" % pretrain_path) | |
return model | |
def get_gptk_image_transform(model_type: str = "gptk-7b"): | |
assert model_type in ("gptk-7b", "gptk-13b") | |
model_config = OmegaConf.load(f"model/{model_type}.yaml") | |
size = model_config.get("image_size", 224) | |
normalizer = T.Normalize( | |
mean=(0.48145466, 0.4578275, 0.40821073), | |
std=(0.26862954, 0.26130258, 0.27577711) | |
) | |
trans_train = T.Compose([ | |
T.RandomResizedCrop( | |
size=(size, size), scale=(0.5, 1.0), | |
interpolation=InterpolationMode.BICUBIC, | |
), | |
T.RandomHorizontalFlip(), | |
T.ToTensor(), | |
normalizer | |
]) | |
trans_val = T.Compose([ | |
T.Resize( | |
size=(size, size), interpolation=InterpolationMode.BICUBIC, | |
), | |
T.RandomHorizontalFlip(), | |
T.ToTensor(), | |
normalizer | |
]) | |
return trans_train, trans_val | |
def get_gptk_model( | |
model_type: str = "gptk-7b", | |
d_knwl: int = 768, | |
topk: dict = {"whole": 0, "five": 0, "nine": 0}, | |
pc: float = 0.1, pt: float = 0.1, pv: float = 0.4 | |
): | |
assert model_type in ("gptk-7b", "gptk-13b") | |
model_config = OmegaConf.load(f"model/{model_type}.yaml") | |
model_config.pv = pv | |
model_config.pt = pt | |
model_config.pc = pc | |
model_config.topk = {k: v for k, v in topk.items() if v > 0} | |
model_config.d_knwl = d_knwl | |
model = GPTK.from_config(model_config) | |
if sum(topk.values()) > 0: | |
model.knwl_query.data.copy_(model.query_tokens.data.clone().detach()) | |
return model | |