PandaGPT / train_sft.py
gmftbyGMFTBY
update
8366b03
from header import *
from datasets import *
from model import *
from config import *
def parser_args():
parser = argparse.ArgumentParser(description='train parameters')
parser.add_argument('--model', type=str)
parser.add_argument('--data_path', type=str)
parser.add_argument('--local_rank', default=0, type=int)
parser.add_argument('--save_path', type=str)
parser.add_argument('--log_path', type=str)
# model configurations
parser.add_argument('--image_root_path', type=str) # the directory that stores all images
parser.add_argument('--imagebind_ckpt_path', type=str) # the path that stores the imagebind checkpoint
parser.add_argument('--vicuna_ckpt_path', type=str) # the path that stores the vicuna checkpoint
parser.add_argument('--delta_ckpt_path', type=str) # the delta parameters trained in stage 1
parser.add_argument('--max_tgt_len', type=int) # the maximum sequence length
parser.add_argument('--stage', type=int) # the maximum sequence length
return parser.parse_args()
def initialize_distributed(args):
args['master_ip'] = os.getenv('MASTER_ADDR', 'localhost')
args['master_port'] = os.getenv('MASTER_PORT', '6000')
args['world_size'] = int(os.getenv('WORLD_SIZE', '1'))
args['local_rank'] = int(os.getenv('RANK', '0')) % torch.cuda.device_count()
device = args['local_rank'] % torch.cuda.device_count()
torch.cuda.set_device(device)
deepspeed.init_distributed(dist_backend='nccl')
def set_random_seed(seed):
if seed is not None and seed > 0:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.random.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def config_env(args):
args['root_dir'] = '../'
args['mode'] = 'train'
config = load_config(args)
args.update(config)
initialize_distributed(args)
set_random_seed(args['seed'])
def build_directory(path):
if os.path.exists(path):
pass
else: # recursively construct directory
os.makedirs(path, exist_ok=True)
def main(**args):
config_env(args)
args['ds_config_path'] = f'dsconfig/{args["model"]}_stage_{args["stage"]}.json'
dschf = HfDeepSpeedConfig(args['ds_config_path'])
args['dschf'] = dschf
build_directory(args['save_path'])
build_directory(args['log_path'])
if args['log_path']:
logging.basicConfig(
format='%(asctime)s - %(pathname)s[line:%(lineno)d] - %(levelname)s: %(message)s',
level=logging.DEBUG,
filename=f'{args["log_path"]}/train_{time.asctime()}.log',
filemode='w'
)
train_data, train_iter, sampler = load_sft_dataset(args)
length = args['epochs'] * len(train_data) // args['world_size'] // dschf.config['train_micro_batch_size_per_gpu']
total_steps = args['epochs'] * len(train_data) // dschf.config['train_batch_size']
args['total_steps'] = total_steps
agent = load_model(args)
torch.distributed.barrier()
# begin to train
pbar = tqdm(total=length) # maximum total number
current_step = 0
for epoch_i in tqdm(range(args['epochs'])):
for batch in train_iter:
agent.train_model(
batch,
current_step=current_step,
pbar=pbar
)
current_step += 1
# save at the end of the training
torch.distributed.barrier()
agent.save_model(args['save_path'], 0)
if __name__ == "__main__":
args = parser_args()
args = vars(args)
main(**args)