PandaGPT / app_case.py
Huayang Li
update demo with case
d711bd7
raw
history blame
7.95 kB
from transformers import AutoModel, AutoTokenizer
import os
import ipdb
import gradio as gr
import mdtex2html
from model.openllama import OpenLLAMAPEFTModel
import torch
import json
from header import TaskType, LoraConfig
# init the model
args = {
'model': 'openllama_peft',
'imagebind_ckpt_path': 'pretrained_ckpt/imagebind_ckpt',
'vicuna_ckpt_path': 'openllmplayground/vicuna_7b_v0',
'delta_ckpt_path': 'pretrained_ckpt/pandagpt_ckpt/7b/pytorch_model.pt',
'stage': 2,
'max_tgt_len': 128,
'lora_r': 32,
'lora_alpha': 32,
'lora_dropout': 0.1,
}
model = OpenLLAMAPEFTModel(**args)
delta_ckpt = torch.load(args['delta_ckpt_path'], map_location=torch.device('cpu'))
model.load_state_dict(delta_ckpt, strict=False)
model = model.half().cuda().eval() if torch.cuda.is_available() else model.eval()
print(f'[!] init the model over ...')
"""Override Chatbot.postprocess"""
def postprocess(self, y):
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
None if message is None else mdtex2html.convert((message)),
None if response is None else mdtex2html.convert(response),
)
return y
gr.Chatbot.postprocess = postprocess
def parse_text(text):
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split('`')
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f'<br></code></pre>'
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", "\`")
line = line.replace("<", "&lt;")
line = line.replace(">", "&gt;")
line = line.replace(" ", "&nbsp;")
line = line.replace("*", "&ast;")
line = line.replace("_", "&lowbar;")
line = line.replace("-", "&#45;")
line = line.replace(".", "&#46;")
line = line.replace("!", "&#33;")
line = line.replace("(", "&#40;")
line = line.replace(")", "&#41;")
line = line.replace("$", "&#36;")
lines[i] = "<br>"+line
text = "".join(lines)
return text
def predict(
input,
image_path,
audio_path,
video_path,
thermal_path,
chatbot,
max_length,
top_p,
temperature,
history,
modality_cache,
):
if image_path is None and audio_path is None and video_path is None and thermal_path is None:
return [(input, "There is no image/audio/video provided. Please upload the file to start a conversation.")]
else:
print(f'[!] image path: {image_path}\n[!] audio path: {audio_path}\n[!] video path: {video_path}\n[!] thermal pah: {thermal_path}')
# prepare the prompt
prompt_text = ''
for idx, (q, a) in enumerate(history):
if idx == 0:
prompt_text += f'{q}\n### Assistant: {a}\n###'
else:
prompt_text += f' Human: {q}\n### Assistant: {a}\n###'
if len(history) == 0:
prompt_text += f'{input}'
else:
prompt_text += f' Human: {input}'
response = model.generate({
'prompt': prompt_text,
'image_paths': [image_path] if image_path else [],
'audio_paths': [audio_path] if audio_path else [],
'video_paths': [video_path] if video_path else [],
'thermal_paths': [thermal_path] if thermal_path else [],
'top_p': top_p,
'temperature': temperature,
'max_tgt_len': max_length,
'modality_embeds': modality_cache
})
chatbot.append((parse_text(input), parse_text(response)))
history.append((input, response))
return chatbot, history, modality_cache
def reset_user_input():
return gr.update(value='')
def reset_state():
return None, None, None, None, [], [], []
with gr.Blocks() as demo:
gr.HTML("""<h1 align="center">PandaGPT</h1>""")
gr.Markdown('''We note that the current online demo uses the 7B version of PandaGPT due to the limitation of computation resource.
Better results should be expected when switching to the 13B version of PandaGPT.
For more details on how to run 13B PandaGPT, please refer to our [main project repository](https://github.com/yxuansu/PandaGPT).''')
with gr.Row(scale=4):
with gr.Column(scale=2):
image_path = gr.Image(type="filepath", label="Image", value=None)
gr.Examples(
[
os.path.join(os.path.dirname(__file__), "assets/images/bird_image.jpg"),
os.path.join(os.path.dirname(__file__), "assets/images/dog_image.jpg"),
os.path.join(os.path.dirname(__file__), "assets/images/car_image.jpg"),
],
image_path
)
with gr.Column(scale=2):
audio_path = gr.Audio(type="filepath", label="Audio", value=None)
gr.Examples(
[
os.path.join(os.path.dirname(__file__), "assets/audios/bird_audio.wav"),
os.path.join(os.path.dirname(__file__), "assets/audios/dog_audio.wav"),
os.path.join(os.path.dirname(__file__), "assets/audios/car_audio.wav"),
],
audio_path
)
with gr.Row(scale=4):
with gr.Column(scale=2):
video_path = gr.Video(type='file', label="Video")
gr.Examples(
[
os.path.join(os.path.dirname(__file__), "assets/videos/world.mp4"),
os.path.join(os.path.dirname(__file__), "assets/videos/a.mp4"),
],
video_path
)
with gr.Column(scale=2):
thermal_path = gr.Image(type="filepath", label="Thermal Image", value=None)
gr.Examples(
[
os.path.join(os.path.dirname(__file__), "assets/thermals/190662.jpg"),
os.path.join(os.path.dirname(__file__), "assets/thermals/210009.jpg"),
],
thermal_path
)
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=4):
with gr.Column(scale=12):
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(container=False)
with gr.Column(min_width=32, scale=1):
submitBtn = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
max_length = gr.Slider(0, 512, value=128, step=1.0, label="Maximum length", interactive=True)
top_p = gr.Slider(0, 1, value=0.01, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0, 1, value=0.8, step=0.01, label="Temperature", interactive=True)
history = gr.State([])
modality_cache = gr.State([])
submitBtn.click(
predict, [
user_input,
image_path,
audio_path,
video_path,
thermal_path,
chatbot,
max_length,
top_p,
temperature,
history,
modality_cache,
], [
chatbot,
history,
modality_cache
],
show_progress=True
)
submitBtn.click(reset_user_input, [], [user_input])
emptyBtn.click(reset_state, outputs=[
image_path,
audio_path,
video_path,
thermal_path,
chatbot,
history,
modality_cache
], show_progress=True)
demo.launch(enable_queue=True)