Spaces:
Sleeping
Sleeping
GMARTINEZMILLA
commited on
Commit
·
fe7656a
1
Parent(s):
714d8c4
feat: updated location of files
Browse files
app.py
CHANGED
@@ -14,6 +14,47 @@ from utils import recomienda_tfid
|
|
14 |
# Page configuration
|
15 |
st.set_page_config(page_title="DeepInsightz", page_icon=":bar_chart:", layout="wide")
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
# Load CSV files at the top
|
18 |
df = pd.read_csv("df_clean.csv")
|
19 |
nombres_proveedores = pd.read_csv("nombres_proveedores.csv", sep=';')
|
@@ -94,53 +135,12 @@ def radar_chart(categories, values, amounts, title):
|
|
94 |
|
95 |
return fig
|
96 |
|
97 |
-
# Custom CSS for dark theme and styling
|
98 |
-
st.markdown("""
|
99 |
-
<style>
|
100 |
-
body {
|
101 |
-
background-color: #121212;
|
102 |
-
color: white;
|
103 |
-
}
|
104 |
-
.stMetric {
|
105 |
-
background-color: #2E2E2E;
|
106 |
-
border-radius: 10px;
|
107 |
-
padding: 10px;
|
108 |
-
}
|
109 |
-
.stMetric > div {
|
110 |
-
color: white;
|
111 |
-
}
|
112 |
-
.stMetric > div > div {
|
113 |
-
color: white !important;
|
114 |
-
}
|
115 |
-
.custom-title {
|
116 |
-
color: white;
|
117 |
-
font-size: 36px;
|
118 |
-
margin-bottom: 20px;
|
119 |
-
}
|
120 |
-
.custom-metric-box {
|
121 |
-
background-color: #2E2E2E;
|
122 |
-
border-radius: 10px;
|
123 |
-
padding: 20px;
|
124 |
-
margin-bottom: 10px;
|
125 |
-
text-align: center;
|
126 |
-
color: white;
|
127 |
-
}
|
128 |
-
.up-arrow {
|
129 |
-
color: #00FF00; /* Green */
|
130 |
-
}
|
131 |
-
.down-arrow {
|
132 |
-
color: #FF0000; /* Red */
|
133 |
-
}
|
134 |
-
.container {
|
135 |
-
display: flex;
|
136 |
-
justify-content: space-between;
|
137 |
-
}
|
138 |
-
</style>
|
139 |
-
""", unsafe_allow_html=True)
|
140 |
-
|
141 |
# Navigation menu
|
142 |
-
st.sidebar
|
143 |
-
|
|
|
|
|
|
|
144 |
|
145 |
if page == "Summary":
|
146 |
st.title("Welcome to DeepInsightz")
|
@@ -149,30 +149,29 @@ if page == "Summary":
|
|
149 |
We analyzed thousands of customers and suppliers to help businesses make smarter sales decisions.
|
150 |
""")
|
151 |
|
152 |
-
# Create layout with three columns
|
153 |
-
col1, col2, col3 = st.columns(
|
154 |
|
155 |
# Left Column (Red): Metrics and Donut Charts
|
156 |
with col1:
|
157 |
-
st.markdown('
|
158 |
-
st.
|
159 |
-
st.
|
160 |
|
161 |
-
st.markdown('
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
st.markdown('<div class="custom-box">States Migration</div>', unsafe_allow_html=True)
|
166 |
-
|
167 |
-
# Donut chart placeholder
|
168 |
donut_fig = px.pie(values=[70, 30], names=['Inbound', 'Outbound'], hole=0.7)
|
169 |
donut_fig.update_traces(textinfo='percent+label')
|
170 |
donut_fig.update_layout(showlegend=False, margin=dict(t=0, b=0, l=0, r=0))
|
171 |
st.plotly_chart(donut_fig, use_container_width=True)
|
172 |
|
|
|
173 |
# Middle Column (White): 3D Cluster Model and Bar Chart
|
174 |
with col2:
|
175 |
-
st.
|
|
|
|
|
176 |
np.random.seed(42)
|
177 |
df_cluster = pd.DataFrame({
|
178 |
'Cluster': np.random.choice(['Cluster 1', 'Cluster 2', 'Cluster 3', 'Cluster 4'], 100),
|
@@ -182,24 +181,26 @@ if page == "Summary":
|
|
182 |
})
|
183 |
fig_cluster = px.scatter_3d(df_cluster, x='x', y='y', z='z', color='Cluster')
|
184 |
st.plotly_chart(fig_cluster, use_container_width=True)
|
185 |
-
|
186 |
-
st.
|
|
|
|
|
187 |
sales_data = {'Cluster': ['Cluster 1', 'Cluster 2', 'Cluster 3', 'Cluster 4'],
|
188 |
-
|
189 |
df_sales = pd.DataFrame(sales_data)
|
190 |
fig_sales = px.bar(df_sales, x='Cluster', y='Sales', title="Sales by Cluster")
|
191 |
st.plotly_chart(fig_sales, use_container_width=True)
|
192 |
|
193 |
# Right Column (Blue): Key Metrics Overview and Data Preparation Summary
|
194 |
with col3:
|
195 |
-
st.
|
196 |
st.write("""
|
197 |
- **Customers Analyzed**: 4,000
|
198 |
- **Suppliers Analyzed**: 400
|
199 |
- **Invoice Lines Processed**: 800,000
|
200 |
""")
|
201 |
|
202 |
-
st.
|
203 |
st.write("""
|
204 |
- Cleaned and standardized product codes and descriptions.
|
205 |
- Excluded customers with fewer than 12 purchases or sales below €1,200.
|
|
|
14 |
# Page configuration
|
15 |
st.set_page_config(page_title="DeepInsightz", page_icon=":bar_chart:", layout="wide")
|
16 |
|
17 |
+
# Custom CSS for styling similar to the inspiration
|
18 |
+
st.markdown("""
|
19 |
+
<style>
|
20 |
+
[data-testid="block-container"] {
|
21 |
+
padding-left: 2rem;
|
22 |
+
padding-right: 2rem;
|
23 |
+
padding-top: 1rem;
|
24 |
+
padding-bottom: 0rem;
|
25 |
+
margin-bottom: -7rem;
|
26 |
+
}
|
27 |
+
[data-testid="stVerticalBlock"] {
|
28 |
+
padding-left: 0rem;
|
29 |
+
padding-right: 0rem;
|
30 |
+
}
|
31 |
+
[data-testid="stMetric"] {
|
32 |
+
background-color: #393939;
|
33 |
+
text-align: center;
|
34 |
+
padding: 15px 0;
|
35 |
+
}
|
36 |
+
[data-testid="stMetricLabel"] {
|
37 |
+
display: flex;
|
38 |
+
justify-content: center;
|
39 |
+
align-items: center;
|
40 |
+
}
|
41 |
+
[data-testid="stMetricDeltaIcon-Up"] {
|
42 |
+
position: relative;
|
43 |
+
left: 38%;
|
44 |
+
-webkit-transform: translateX(-50%);
|
45 |
+
-ms-transform: translateX(-50%);
|
46 |
+
transform: translateX(-50%);
|
47 |
+
}
|
48 |
+
[data-testid="stMetricDeltaIcon-Down"] {
|
49 |
+
position: relative;
|
50 |
+
left: 38%;
|
51 |
+
-webkit-transform: translateX(-50%);
|
52 |
+
-ms-transform: translateX(-50%);
|
53 |
+
transform: translateX(-50%);
|
54 |
+
}
|
55 |
+
</style>
|
56 |
+
""", unsafe_allow_html=True)
|
57 |
+
|
58 |
# Load CSV files at the top
|
59 |
df = pd.read_csv("df_clean.csv")
|
60 |
nombres_proveedores = pd.read_csv("nombres_proveedores.csv", sep=';')
|
|
|
135 |
|
136 |
return fig
|
137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
# Navigation menu
|
139 |
+
with st.sidebar:
|
140 |
+
st.sidebar.title("DeepInsightz")
|
141 |
+
page = st.sidebar.selectbox("Select the tool you want to use", ["Summary", "Customer Analysis", "Articles Recommendations"])
|
142 |
+
|
143 |
+
|
144 |
|
145 |
if page == "Summary":
|
146 |
st.title("Welcome to DeepInsightz")
|
|
|
149 |
We analyzed thousands of customers and suppliers to help businesses make smarter sales decisions.
|
150 |
""")
|
151 |
|
152 |
+
# Create layout with three columns
|
153 |
+
col1, col2, col3 = st.columns((1.5, 4.5, 2), gap='medium')
|
154 |
|
155 |
# Left Column (Red): Metrics and Donut Charts
|
156 |
with col1:
|
157 |
+
st.markdown('#### Key Metrics')
|
158 |
+
st.metric(label="Texas", value="29.0 M", delta="+367 K", delta_color="normal")
|
159 |
+
st.metric(label="New York", value="19.5 M", delta="-77 K", delta_color="inverse")
|
160 |
|
161 |
+
st.markdown('#### States Migration')
|
162 |
+
|
163 |
+
# Create a placeholder for your own donut charts with Plotly
|
|
|
|
|
|
|
|
|
164 |
donut_fig = px.pie(values=[70, 30], names=['Inbound', 'Outbound'], hole=0.7)
|
165 |
donut_fig.update_traces(textinfo='percent+label')
|
166 |
donut_fig.update_layout(showlegend=False, margin=dict(t=0, b=0, l=0, r=0))
|
167 |
st.plotly_chart(donut_fig, use_container_width=True)
|
168 |
|
169 |
+
|
170 |
# Middle Column (White): 3D Cluster Model and Bar Chart
|
171 |
with col2:
|
172 |
+
st.markdown('#### 3D Customer Clusters')
|
173 |
+
|
174 |
+
# Replace with your own customer cluster visualization
|
175 |
np.random.seed(42)
|
176 |
df_cluster = pd.DataFrame({
|
177 |
'Cluster': np.random.choice(['Cluster 1', 'Cluster 2', 'Cluster 3', 'Cluster 4'], 100),
|
|
|
181 |
})
|
182 |
fig_cluster = px.scatter_3d(df_cluster, x='x', y='y', z='z', color='Cluster')
|
183 |
st.plotly_chart(fig_cluster, use_container_width=True)
|
184 |
+
|
185 |
+
st.markdown('#### Sales by Cluster')
|
186 |
+
|
187 |
+
# Replace with your own sales data
|
188 |
sales_data = {'Cluster': ['Cluster 1', 'Cluster 2', 'Cluster 3', 'Cluster 4'],
|
189 |
+
'Sales': [400000, 600000, 500000, 300000]}
|
190 |
df_sales = pd.DataFrame(sales_data)
|
191 |
fig_sales = px.bar(df_sales, x='Cluster', y='Sales', title="Sales by Cluster")
|
192 |
st.plotly_chart(fig_sales, use_container_width=True)
|
193 |
|
194 |
# Right Column (Blue): Key Metrics Overview and Data Preparation Summary
|
195 |
with col3:
|
196 |
+
st.markdown('#### Key Metrics Overview')
|
197 |
st.write("""
|
198 |
- **Customers Analyzed**: 4,000
|
199 |
- **Suppliers Analyzed**: 400
|
200 |
- **Invoice Lines Processed**: 800,000
|
201 |
""")
|
202 |
|
203 |
+
st.markdown('#### Data Preparation Summary')
|
204 |
st.write("""
|
205 |
- Cleaned and standardized product codes and descriptions.
|
206 |
- Excluded customers with fewer than 12 purchases or sales below €1,200.
|