Spaces:
Sleeping
Sleeping
GMARTINEZMILLA
commited on
Commit
·
ea19f03
1
Parent(s):
449983f
feat: generated files
Browse files- app.py +36 -12
- euros_proveedores.csv +0 -0
app.py
CHANGED
@@ -10,8 +10,10 @@ st.set_page_config(page_title="Customer Insights App", page_icon=":bar_chart:")
|
|
10 |
# Load CSV files
|
11 |
df = pd.read_csv("df_clean.csv")
|
12 |
nombres_proveedores = pd.read_csv("nombres_proveedores.csv", sep=';')
|
|
|
13 |
|
14 |
nombres_proveedores['codigo'] = nombres_proveedores['codigo'].astype(str)
|
|
|
15 |
|
16 |
# Ignore the last two columns
|
17 |
df = df.iloc[:, :-2]
|
@@ -25,7 +27,7 @@ def get_supplier_name(code):
|
|
25 |
return name[0] if len(name) > 0 else code
|
26 |
|
27 |
# Function to create radar chart
|
28 |
-
def radar_chart(categories, values, title):
|
29 |
# Number of variables
|
30 |
N = len(categories)
|
31 |
|
@@ -36,18 +38,29 @@ def radar_chart(categories, values, title):
|
|
36 |
# Initialize the plot
|
37 |
fig, ax = plt.subplots(figsize=(12, 12), subplot_kw=dict(projection='polar'))
|
38 |
|
39 |
-
#
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
# Set axes
|
45 |
ax.set_xticks(angles[:-1])
|
46 |
ax.set_xticklabels(categories, size=8, wrap=True)
|
47 |
-
ax.set_ylim(0, max(
|
48 |
|
49 |
# Draw reference circles
|
50 |
-
circles = np.linspace(0,
|
51 |
for circle in circles:
|
52 |
ax.plot(angles, [circle]*len(angles), '--', color='gray', alpha=0.3, linewidth=0.5)
|
53 |
|
@@ -55,8 +68,9 @@ def radar_chart(categories, values, title):
|
|
55 |
ax.set_yticklabels([])
|
56 |
ax.spines['polar'].set_visible(False)
|
57 |
|
58 |
-
# Add title
|
59 |
plt.title(title, size=16, y=1.1)
|
|
|
60 |
|
61 |
return fig
|
62 |
|
@@ -100,8 +114,9 @@ elif page == "Customer Analysis":
|
|
100 |
if customer_code:
|
101 |
# Filter data for the selected customer
|
102 |
customer_data = df[df["CLIENTE"] == customer_code]
|
|
|
103 |
|
104 |
-
if not customer_data.empty:
|
105 |
st.write(f"### Analysis for Customer {customer_code}")
|
106 |
|
107 |
# Define purchase threshold
|
@@ -117,18 +132,27 @@ elif page == "Customer Analysis":
|
|
117 |
values = all_manufacturers[customer_data.index[0]].values.tolist()
|
118 |
manufacturers = [get_supplier_name(m) for m in all_manufacturers.index.tolist()]
|
119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
# If there are fewer than 3 manufacturers, add a third one with value 0
|
121 |
if len(manufacturers) < 3:
|
122 |
manufacturers.append("Other")
|
123 |
values.append(0)
|
|
|
124 |
|
125 |
# Display the results for each manufacturer
|
126 |
st.write(f"### Results for {len(manufacturers)} manufacturers (sorted):")
|
127 |
-
for manufacturer, value in zip(manufacturers, values):
|
128 |
-
st.write(f"{manufacturer} = {value:.4f}")
|
129 |
|
130 |
# Create and display the radar chart
|
131 |
-
fig = radar_chart(manufacturers, values, f'Radar Chart for {len(manufacturers)} Manufacturers of Customer {customer_code}')
|
132 |
st.pyplot(fig)
|
133 |
|
134 |
# Customer sales 2021-2024 (if data exists)
|
|
|
10 |
# Load CSV files
|
11 |
df = pd.read_csv("df_clean.csv")
|
12 |
nombres_proveedores = pd.read_csv("nombres_proveedores.csv", sep=';')
|
13 |
+
euros_proveedor = pd.read_csv("euros_proveedor.csv", sep=',')
|
14 |
|
15 |
nombres_proveedores['codigo'] = nombres_proveedores['codigo'].astype(str)
|
16 |
+
euros_proveedor['CLIENTE'] = euros_proveedor['CLIENTE'].astype(str)
|
17 |
|
18 |
# Ignore the last two columns
|
19 |
df = df.iloc[:, :-2]
|
|
|
27 |
return name[0] if len(name) > 0 else code
|
28 |
|
29 |
# Function to create radar chart
|
30 |
+
def radar_chart(categories, values, amounts, title):
|
31 |
# Number of variables
|
32 |
N = len(categories)
|
33 |
|
|
|
38 |
# Initialize the plot
|
39 |
fig, ax = plt.subplots(figsize=(12, 12), subplot_kw=dict(projection='polar'))
|
40 |
|
41 |
+
# Normalize values and amounts
|
42 |
+
max_value = max(values)
|
43 |
+
normalized_values = [v / max_value for v in values]
|
44 |
+
total_amount = sum(amounts)
|
45 |
+
normalized_amounts = [a / total_amount for a in amounts]
|
46 |
+
|
47 |
+
# Draw polygon for units and fill it
|
48 |
+
normalized_values += normalized_values[:1]
|
49 |
+
ax.plot(angles, normalized_values, 'o-', linewidth=2, color='#FF69B4', label='% Units')
|
50 |
+
ax.fill(angles, normalized_values, alpha=0.25, color='#FF69B4')
|
51 |
+
|
52 |
+
# Draw polygon for amounts and fill it
|
53 |
+
normalized_amounts += normalized_amounts[:1]
|
54 |
+
ax.plot(angles, normalized_amounts, 'o-', linewidth=2, color='#4B0082', label='% Spend')
|
55 |
+
ax.fill(angles, normalized_amounts, alpha=0.25, color='#4B0082')
|
56 |
|
57 |
# Set axes
|
58 |
ax.set_xticks(angles[:-1])
|
59 |
ax.set_xticklabels(categories, size=8, wrap=True)
|
60 |
+
ax.set_ylim(0, max(max(normalized_values), max(normalized_amounts)) * 1.1)
|
61 |
|
62 |
# Draw reference circles
|
63 |
+
circles = np.linspace(0, 1, 5)
|
64 |
for circle in circles:
|
65 |
ax.plot(angles, [circle]*len(angles), '--', color='gray', alpha=0.3, linewidth=0.5)
|
66 |
|
|
|
68 |
ax.set_yticklabels([])
|
69 |
ax.spines['polar'].set_visible(False)
|
70 |
|
71 |
+
# Add title and legend
|
72 |
plt.title(title, size=16, y=1.1)
|
73 |
+
plt.legend(loc='upper right', bbox_to_anchor=(1.3, 1.1))
|
74 |
|
75 |
return fig
|
76 |
|
|
|
114 |
if customer_code:
|
115 |
# Filter data for the selected customer
|
116 |
customer_data = df[df["CLIENTE"] == customer_code]
|
117 |
+
customer_euros = euros_proveedor[euros_proveedor["CLIENTE"] == customer_code]
|
118 |
|
119 |
+
if not customer_data.empty and not customer_euros.empty:
|
120 |
st.write(f"### Analysis for Customer {customer_code}")
|
121 |
|
122 |
# Define purchase threshold
|
|
|
132 |
values = all_manufacturers[customer_data.index[0]].values.tolist()
|
133 |
manufacturers = [get_supplier_name(m) for m in all_manufacturers.index.tolist()]
|
134 |
|
135 |
+
# Get amounts in euros
|
136 |
+
amounts = []
|
137 |
+
for m in all_manufacturers.index.tolist():
|
138 |
+
if m in customer_euros.columns:
|
139 |
+
amounts.append(customer_euros[m].values[0])
|
140 |
+
else:
|
141 |
+
amounts.append(0)
|
142 |
+
|
143 |
# If there are fewer than 3 manufacturers, add a third one with value 0
|
144 |
if len(manufacturers) < 3:
|
145 |
manufacturers.append("Other")
|
146 |
values.append(0)
|
147 |
+
amounts.append(0)
|
148 |
|
149 |
# Display the results for each manufacturer
|
150 |
st.write(f"### Results for {len(manufacturers)} manufacturers (sorted):")
|
151 |
+
for manufacturer, value, amount in zip(manufacturers, values, amounts):
|
152 |
+
st.write(f"{manufacturer} = {value:.4f} units, €{amount:.2f}")
|
153 |
|
154 |
# Create and display the radar chart
|
155 |
+
fig = radar_chart(manufacturers, values, amounts, f'Radar Chart for {len(manufacturers)} Manufacturers of Customer {customer_code}')
|
156 |
st.pyplot(fig)
|
157 |
|
158 |
# Customer sales 2021-2024 (if data exists)
|
euros_proveedores.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|