Spaces:
Sleeping
Sleeping
GMARTINEZMILLA
commited on
Update utils.py
Browse files
utils.py
CHANGED
@@ -11,6 +11,9 @@ import re
|
|
11 |
|
12 |
def get_next_version(file_prefix, folder='RecommendationFiles/'):
|
13 |
"""Find the latest version of a file and return the next version's filename."""
|
|
|
|
|
|
|
14 |
# Regular expression to match files like 'file_0001.joblib'
|
15 |
pattern = re.compile(rf"{file_prefix}_(\d+)\.joblib")
|
16 |
files = [f for f in os.listdir(folder) if pattern.match(f)]
|
@@ -19,16 +22,16 @@ def get_next_version(file_prefix, folder='RecommendationFiles/'):
|
|
19 |
versions = [int(pattern.match(f).group(1)) for f in files]
|
20 |
|
21 |
# Determine the next version number
|
22 |
-
if versions
|
23 |
-
next_version = max(versions) + 1
|
24 |
-
else:
|
25 |
-
next_version = 1 # If no versions exist, start with 1
|
26 |
|
27 |
-
# Return the next version filename
|
28 |
-
return f"{file_prefix}_{next_version:04d}.joblib"
|
29 |
|
30 |
def get_latest_version(file_prefix, folder='RecommendationFiles/'):
|
31 |
"""Find the latest version of a file to load."""
|
|
|
|
|
|
|
32 |
# Regular expression to match files like 'file_0001.joblib'
|
33 |
pattern = re.compile(rf"{file_prefix}_(\d+)\.joblib")
|
34 |
files = [f for f in os.listdir(folder) if pattern.match(f)]
|
@@ -38,61 +41,68 @@ def get_latest_version(file_prefix, folder='RecommendationFiles/'):
|
|
38 |
|
39 |
if versions:
|
40 |
latest_version = max(versions)
|
41 |
-
return f"{file_prefix}_{latest_version:04d}.joblib"
|
42 |
else:
|
43 |
-
raise FileNotFoundError(f"No versions found for {file_prefix}")
|
44 |
|
45 |
|
46 |
def recomienda_tf(new_basket, cestas, productos):
|
47 |
|
|
|
48 |
tf_matrix_file = get_latest_version('count_matrix')
|
49 |
count_vectorizer_file = get_latest_version('count_vectorizer')
|
50 |
|
51 |
-
#
|
52 |
tf_matrix = load(tf_matrix_file)
|
53 |
count = load(count_vectorizer_file)
|
54 |
|
55 |
-
#
|
56 |
new_basket_str = ' '.join(new_basket)
|
57 |
new_basket_vector = count.transform([new_basket_str])
|
58 |
-
new_basket_tf = normalize(new_basket_vector, norm='l1') #
|
59 |
-
|
|
|
60 |
similarities = cosine_similarity(new_basket_tf, tf_matrix)
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
64 |
recommendations_count = {}
|
65 |
total_similarity = 0
|
66 |
-
|
|
|
67 |
for idx in similar_indices:
|
68 |
sim_score = similarities[0][idx]
|
69 |
-
total_similarity += sim_score #
|
70 |
products = cestas.iloc[idx]['Cestas'].split()
|
71 |
-
|
72 |
-
unique_products = set(products) #
|
73 |
-
|
74 |
for product in unique_products:
|
75 |
-
if product.strip() not in new_basket: #
|
76 |
recommendations_count[product.strip()] = recommendations_count.get(product.strip(), 0) + sim_score
|
77 |
-
|
78 |
-
#
|
79 |
recommendations_with_prob = []
|
80 |
-
if total_similarity > 0:
|
81 |
recommendations_with_prob = [(product, score / total_similarity) for product, score in recommendations_count.items()]
|
82 |
else:
|
83 |
print("No se encontraron similitudes suficientes para calcular probabilidades.")
|
84 |
|
85 |
-
|
86 |
-
|
|
|
|
|
87 |
recommendations_data = []
|
88 |
|
89 |
for product, score in recommendations_with_prob:
|
90 |
-
#
|
91 |
description = productos.loc[productos['ARTICULO'] == product, 'DESCRIPCION']
|
92 |
if not description.empty:
|
93 |
recommendations_data.append({
|
94 |
'ARTICULO': product,
|
95 |
-
'DESCRIPCION': description.values[0],
|
96 |
'RELEVANCIA': score
|
97 |
})
|
98 |
recommendations_df = pd.DataFrame(recommendations_data)
|
@@ -100,30 +110,30 @@ def recomienda_tf(new_basket, cestas, productos):
|
|
100 |
return recommendations_df.head(5)
|
101 |
|
102 |
def retroalimentacion(cestas, cesta_nueva):
|
103 |
-
#
|
104 |
cesta_unida = ' '.join(cesta_nueva)
|
105 |
-
|
|
|
106 |
if not cestas['Cestas'].isin([cesta_unida]).any():
|
107 |
-
# Añadir la nueva cesta si no existe
|
108 |
cestas.loc[len(cestas)] = cesta_unida
|
109 |
print("Cesta añadida.")
|
110 |
-
|
111 |
-
|
|
|
112 |
else:
|
113 |
print("La cesta ya existe en el DataFrame.")
|
114 |
|
115 |
-
#
|
116 |
count_vectorizer = CountVectorizer()
|
117 |
count_vectorizer.fit(cestas['Cestas'])
|
118 |
count_matrix = count_vectorizer.transform(cestas['Cestas'])
|
119 |
tf_matrix = normalize(count_matrix, norm='l1')
|
120 |
|
121 |
-
#
|
122 |
count_vectorizer_file = get_next_version('count_vectorizer')
|
123 |
tf_matrix_file = get_next_version('tf_matrix')
|
124 |
|
125 |
dump(count_vectorizer, count_vectorizer_file)
|
126 |
dump(tf_matrix, tf_matrix_file)
|
127 |
-
|
128 |
|
129 |
return None
|
|
|
11 |
|
12 |
def get_next_version(file_prefix, folder='RecommendationFiles/'):
|
13 |
"""Find the latest version of a file and return the next version's filename."""
|
14 |
+
if not os.path.exists(folder):
|
15 |
+
os.makedirs(folder) # Ensure the folder exists
|
16 |
+
|
17 |
# Regular expression to match files like 'file_0001.joblib'
|
18 |
pattern = re.compile(rf"{file_prefix}_(\d+)\.joblib")
|
19 |
files = [f for f in os.listdir(folder) if pattern.match(f)]
|
|
|
22 |
versions = [int(pattern.match(f).group(1)) for f in files]
|
23 |
|
24 |
# Determine the next version number
|
25 |
+
next_version = max(versions) + 1 if versions else 1
|
|
|
|
|
|
|
26 |
|
27 |
+
# Return the next version filename with the folder path
|
28 |
+
return os.path.join(folder, f"{file_prefix}_{next_version:04d}.joblib")
|
29 |
|
30 |
def get_latest_version(file_prefix, folder='RecommendationFiles/'):
|
31 |
"""Find the latest version of a file to load."""
|
32 |
+
if not os.path.exists(folder):
|
33 |
+
raise FileNotFoundError(f"Folder '{folder}' does not exist")
|
34 |
+
|
35 |
# Regular expression to match files like 'file_0001.joblib'
|
36 |
pattern = re.compile(rf"{file_prefix}_(\d+)\.joblib")
|
37 |
files = [f for f in os.listdir(folder) if pattern.match(f)]
|
|
|
41 |
|
42 |
if versions:
|
43 |
latest_version = max(versions)
|
44 |
+
return os.path.join(folder, f"{file_prefix}_{latest_version:04d}.joblib")
|
45 |
else:
|
46 |
+
raise FileNotFoundError(f"No versions found for {file_prefix} in folder '{folder}'")
|
47 |
|
48 |
|
49 |
def recomienda_tf(new_basket, cestas, productos):
|
50 |
|
51 |
+
# Get the latest versions of the matrix and vectorizer from the folder
|
52 |
tf_matrix_file = get_latest_version('count_matrix')
|
53 |
count_vectorizer_file = get_latest_version('count_vectorizer')
|
54 |
|
55 |
+
# Load the matrix TF and the vectorizer
|
56 |
tf_matrix = load(tf_matrix_file)
|
57 |
count = load(count_vectorizer_file)
|
58 |
|
59 |
+
# Convert the new basket into TF (Term Frequency) format
|
60 |
new_basket_str = ' '.join(new_basket)
|
61 |
new_basket_vector = count.transform([new_basket_str])
|
62 |
+
new_basket_tf = normalize(new_basket_vector, norm='l1') # Normalize the count matrix for the current basket
|
63 |
+
|
64 |
+
# Compare the new basket with previous ones
|
65 |
similarities = cosine_similarity(new_basket_tf, tf_matrix)
|
66 |
+
|
67 |
+
# Get the indices of the most similar baskets
|
68 |
+
similar_indices = similarities.argsort()[0][-4:] # Top 4 most similar baskets
|
69 |
+
|
70 |
+
# Create a dictionary to count recommendations
|
71 |
recommendations_count = {}
|
72 |
total_similarity = 0
|
73 |
+
|
74 |
+
# Recommend products from similar baskets
|
75 |
for idx in similar_indices:
|
76 |
sim_score = similarities[0][idx]
|
77 |
+
total_similarity += sim_score # Sum of similarities
|
78 |
products = cestas.iloc[idx]['Cestas'].split()
|
79 |
+
|
80 |
+
unique_products = set(products) # Use a set to get unique products
|
81 |
+
|
82 |
for product in unique_products:
|
83 |
+
if product.strip() not in new_basket: # Avoid recommending items already in the basket
|
84 |
recommendations_count[product.strip()] = recommendations_count.get(product.strip(), 0) + sim_score
|
85 |
+
|
86 |
+
# Calculate the relative probability of each recommended product
|
87 |
recommendations_with_prob = []
|
88 |
+
if total_similarity > 0:
|
89 |
recommendations_with_prob = [(product, score / total_similarity) for product, score in recommendations_count.items()]
|
90 |
else:
|
91 |
print("No se encontraron similitudes suficientes para calcular probabilidades.")
|
92 |
|
93 |
+
# Sort recommendations by relevance score
|
94 |
+
recommendations_with_prob.sort(key=lambda x: x[1], reverse=True)
|
95 |
+
|
96 |
+
# Create a new DataFrame to store recommendations
|
97 |
recommendations_data = []
|
98 |
|
99 |
for product, score in recommendations_with_prob:
|
100 |
+
# Search for the product description in the products DataFrame
|
101 |
description = productos.loc[productos['ARTICULO'] == product, 'DESCRIPCION']
|
102 |
if not description.empty:
|
103 |
recommendations_data.append({
|
104 |
'ARTICULO': product,
|
105 |
+
'DESCRIPCION': description.values[0],
|
106 |
'RELEVANCIA': score
|
107 |
})
|
108 |
recommendations_df = pd.DataFrame(recommendations_data)
|
|
|
110 |
return recommendations_df.head(5)
|
111 |
|
112 |
def retroalimentacion(cestas, cesta_nueva):
|
113 |
+
# Convert basket from list to string
|
114 |
cesta_unida = ' '.join(cesta_nueva)
|
115 |
+
|
116 |
+
# Add the new basket to the historical baskets if it doesn't already exist
|
117 |
if not cestas['Cestas'].isin([cesta_unida]).any():
|
|
|
118 |
cestas.loc[len(cestas)] = cesta_unida
|
119 |
print("Cesta añadida.")
|
120 |
+
|
121 |
+
# Re-save the updated baskets DataFrame
|
122 |
+
cestas.to_csv('RecommendationFiles/cestas_final.csv', index=False)
|
123 |
else:
|
124 |
print("La cesta ya existe en el DataFrame.")
|
125 |
|
126 |
+
# Re-vectorize the basket DataFrame
|
127 |
count_vectorizer = CountVectorizer()
|
128 |
count_vectorizer.fit(cestas['Cestas'])
|
129 |
count_matrix = count_vectorizer.transform(cestas['Cestas'])
|
130 |
tf_matrix = normalize(count_matrix, norm='l1')
|
131 |
|
132 |
+
# Save new versions of the vectorizer and matrix
|
133 |
count_vectorizer_file = get_next_version('count_vectorizer')
|
134 |
tf_matrix_file = get_next_version('tf_matrix')
|
135 |
|
136 |
dump(count_vectorizer, count_vectorizer_file)
|
137 |
dump(tf_matrix, tf_matrix_file)
|
|
|
138 |
|
139 |
return None
|