GMARTINEZMILLA commited on
Commit
2c1bfb4
1 Parent(s): 89e696a

feat: generated files

Browse files
Files changed (4) hide show
  1. app.py +22 -2
  2. customer_analysis.py +22 -0
  3. customer_recommendation.py +24 -0
  4. requirements.txt +1 -0
app.py CHANGED
@@ -1,4 +1,24 @@
1
  import streamlit as st
2
 
3
- x = st.slider('Select a value')
4
- st.write(x, 'squared is', x * x)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
 
3
+ # Diseño de la página principal
4
+ st.set_page_config(page_title="Customer Insights App", page_icon=":bar_chart:")
5
+
6
+ st.title("Welcome to Customer Insights App")
7
+ st.markdown("""
8
+ This app helps businesses analyze customer behaviors and provide personalized recommendations based on purchase history.
9
+ Use the tools below to dive deeper into your customer data.
10
+ """)
11
+
12
+ # Navegación a las otras herramientas
13
+ st.markdown("## Available Tools:")
14
+ col1, col2 = st.columns(2)
15
+
16
+ with col1:
17
+ st.markdown("### 🔍 Customer Analysis")
18
+ st.write("Analyze customer data to discover patterns and insights.")
19
+ st.button("Go to Customer Analysis", on_click=lambda: st.experimental_rerun())
20
+
21
+ with col2:
22
+ st.markdown("### 📊 Customer Recommendations")
23
+ st.write("Generate recommendations based on customer purchase history.")
24
+ st.button("Go to Recommendations", on_click=lambda: st.experimental_rerun())
customer_analysis.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import plotly.express as px
4
+
5
+ st.set_page_config(page_title="Customer Analysis", page_icon=":mag:")
6
+
7
+ st.title("Customer Analysis")
8
+ st.markdown("""
9
+ Use the tools below to explore your customer data.
10
+ """)
11
+
12
+ # Cargar y visualizar datos
13
+ uploaded_file = st.file_uploader("Upload your CSV file", type="csv")
14
+ if uploaded_file:
15
+ df = pd.read_csv(uploaded_file)
16
+ st.write("## Dataset Overview", df.head())
17
+
18
+ # Mostrar un gráfico interactivo
19
+ st.markdown("### Sales per Customer")
20
+ customer_sales = df.groupby("CLIENTE")["VENTA_ANUAL"].sum().reset_index()
21
+ fig = px.bar(customer_sales, x="CLIENTE", y="VENTA_ANUAL", title="Annual Sales per Customer")
22
+ st.plotly_chart(fig)
customer_recommendation.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+
4
+ st.set_page_config(page_title="Customer Recommendations", page_icon=":chart_with_upwards_trend:")
5
+
6
+ st.title("Customer Recommendations")
7
+ st.markdown("""
8
+ Get tailored recommendations for your customers based on their purchasing history.
9
+ """)
10
+
11
+ # Cargar los datos
12
+ uploaded_file = st.file_uploader("Upload your CSV file", type="csv")
13
+ if uploaded_file:
14
+ df = pd.read_csv(uploaded_file)
15
+ customer_id = st.selectbox("Select a Customer", df["CLIENTE"].unique())
16
+
17
+ # Mostrar datos y recomendación
18
+ st.write(f"### Purchase History for Customer {customer_id}")
19
+ customer_data = df[df["CLIENTE"] == customer_id]
20
+ st.write(customer_data)
21
+
22
+ # Generar recomendaciones (placeholder)
23
+ st.write(f"### Recommended Products for Customer {customer_id}")
24
+ st.write("Product A, Product B, Product C")
requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ plotly