Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
convo history truncation finalized
Browse files- app/main.py +26 -40
- app/models.py +0 -2
- app/utils.py +1 -5
app/main.py
CHANGED
|
@@ -81,40 +81,30 @@ async def chatui_adapter(data):
|
|
| 81 |
messages_value = getattr(data, 'messages', None)
|
| 82 |
preprompt_value = getattr(data, 'preprompt', None)
|
| 83 |
|
| 84 |
-
# Extract query
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
# Build conversation context for generation (last N turns)
|
| 109 |
-
conversation_context = build_conversation_context(messages, max_turns=MAX_TURNS, max_chars=MAX_CHARS)
|
| 110 |
-
logger.info(f"Messages: {messages}")
|
| 111 |
-
logger.info(f"Conversation context: {conversation_context}")
|
| 112 |
-
else:
|
| 113 |
-
# Fallback to legacy text field
|
| 114 |
-
query = text_value
|
| 115 |
-
conversation_context = None
|
| 116 |
-
logger.info(f"✗ Using legacy text field (messages not found or empty)")
|
| 117 |
-
logger.info(f"Processing query: {query[:100]}...")
|
| 118 |
|
| 119 |
full_response = ""
|
| 120 |
sources_collected = None
|
|
@@ -190,14 +180,10 @@ async def chatui_file_adapter(data):
|
|
| 190 |
query = user_messages[-1].content if user_messages else text_value
|
| 191 |
|
| 192 |
logger.info(f"Processing query: {query}")
|
| 193 |
-
logger.info(f"Total messages: {len(messages)}")
|
|
|
|
| 194 |
|
| 195 |
conversation_context = build_conversation_context(messages, max_turns=MAX_TURNS, max_chars=MAX_CHARS)
|
| 196 |
-
else:
|
| 197 |
-
query = text_value
|
| 198 |
-
conversation_context = None
|
| 199 |
-
logger.info(f"✗ Using legacy text field")
|
| 200 |
-
logger.info(f"Processing query: {query[:100]}...")
|
| 201 |
|
| 202 |
file_content = None
|
| 203 |
filename = None
|
|
|
|
| 81 |
messages_value = getattr(data, 'messages', None)
|
| 82 |
preprompt_value = getattr(data, 'preprompt', None)
|
| 83 |
|
| 84 |
+
# Extract query
|
| 85 |
+
|
| 86 |
+
# Convert dict messages to objects if needed
|
| 87 |
+
messages = []
|
| 88 |
+
for msg in messages_value:
|
| 89 |
+
if isinstance(msg, dict):
|
| 90 |
+
messages.append(type('Message', (), {
|
| 91 |
+
'role': msg.get('role', 'unknown'),
|
| 92 |
+
'content': msg.get('content', '')
|
| 93 |
+
})())
|
| 94 |
+
else:
|
| 95 |
+
messages.append(msg)
|
| 96 |
+
|
| 97 |
+
# Extract latest user query
|
| 98 |
+
user_messages = [msg for msg in messages if msg.role == 'user']
|
| 99 |
+
query = user_messages[-1].content if user_messages else text_value
|
| 100 |
+
|
| 101 |
+
# Log conversation context
|
| 102 |
+
logger.info(f"Processing query: {query}")
|
| 103 |
+
logger.info(f"Total messages in conversation: {len(messages)}")
|
| 104 |
+
logger.info(f"User messages: {len(user_messages)}, Assistant messages: {len([m for m in messages if m.role == 'assistant'])}")
|
| 105 |
+
|
| 106 |
+
# Build conversation context for generation (last N turns)
|
| 107 |
+
conversation_context = build_conversation_context(messages, max_turns=MAX_TURNS, max_chars=MAX_CHARS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
full_response = ""
|
| 110 |
sources_collected = None
|
|
|
|
| 180 |
query = user_messages[-1].content if user_messages else text_value
|
| 181 |
|
| 182 |
logger.info(f"Processing query: {query}")
|
| 183 |
+
logger.info(f"Total messages in conversation: {len(messages)}")
|
| 184 |
+
logger.info(f"User messages: {len(user_messages)}, Assistant messages: {len([m for m in messages if m.role == 'assistant'])}")
|
| 185 |
|
| 186 |
conversation_context = build_conversation_context(messages, max_turns=MAX_TURNS, max_chars=MAX_CHARS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
file_content = None
|
| 189 |
filename = None
|
app/models.py
CHANGED
|
@@ -29,13 +29,11 @@ class Message(BaseModel):
|
|
| 29 |
|
| 30 |
class ChatUIInput(BaseModel):
|
| 31 |
"""Input model for text-only ChatUI requests"""
|
| 32 |
-
text: str # Legacy: full concatenated prompt (for backward compatibility)
|
| 33 |
messages: Optional[List[Message]] = None # Structured conversation history
|
| 34 |
preprompt: Optional[str] = None
|
| 35 |
|
| 36 |
class ChatUIFileInput(BaseModel):
|
| 37 |
"""Input model for ChatUI requests with file attachments"""
|
| 38 |
-
text: str
|
| 39 |
files: Optional[List[Dict[str, Any]]] = None
|
| 40 |
messages: Optional[List[Message]] = None # Structured conversation history
|
| 41 |
preprompt: Optional[str] = None
|
|
|
|
| 29 |
|
| 30 |
class ChatUIInput(BaseModel):
|
| 31 |
"""Input model for text-only ChatUI requests"""
|
|
|
|
| 32 |
messages: Optional[List[Message]] = None # Structured conversation history
|
| 33 |
preprompt: Optional[str] = None
|
| 34 |
|
| 35 |
class ChatUIFileInput(BaseModel):
|
| 36 |
"""Input model for ChatUI requests with file attachments"""
|
|
|
|
| 37 |
files: Optional[List[Dict[str, Any]]] = None
|
| 38 |
messages: Optional[List[Message]] = None # Structured conversation history
|
| 39 |
preprompt: Optional[str] = None
|
app/utils.py
CHANGED
|
@@ -123,7 +123,7 @@ def merge_state(base_state: GraphState, updates: dict) -> GraphState:
|
|
| 123 |
|
| 124 |
def build_conversation_context(messages, max_turns: int = 3, max_chars: int = 8000) -> str:
|
| 125 |
"""
|
| 126 |
-
Build conversation context from structured messages.
|
| 127 |
Always keeps the first user and assistant messages, plus the last N turns.
|
| 128 |
|
| 129 |
A "turn" is one user message + following assistant response.
|
|
@@ -161,7 +161,6 @@ def build_conversation_context(messages, max_turns: int = 3, max_chars: int = 80
|
|
| 161 |
context_parts.append(msg_text)
|
| 162 |
char_count += msg_chars
|
| 163 |
msgs_included += 1
|
| 164 |
-
logger.debug(f"Added first USER message ({msg_chars} chars)")
|
| 165 |
|
| 166 |
if first_assistant_msg:
|
| 167 |
msg_text = f"ASSISTANT: {first_assistant_msg.content}"
|
|
@@ -170,7 +169,6 @@ def build_conversation_context(messages, max_turns: int = 3, max_chars: int = 80
|
|
| 170 |
context_parts.append(msg_text)
|
| 171 |
char_count += msg_chars
|
| 172 |
msgs_included += 1
|
| 173 |
-
logger.debug(f"Added first ASSISTANT message ({msg_chars} chars)")
|
| 174 |
|
| 175 |
# Collect last N complete turns (user + assistant pairs)
|
| 176 |
# Find the last N user messages and their corresponding assistant responses
|
|
@@ -223,12 +221,10 @@ def build_conversation_context(messages, max_turns: int = 3, max_chars: int = 80
|
|
| 223 |
msgs_included += 1
|
| 224 |
|
| 225 |
turn_count += 1
|
| 226 |
-
logger.debug(f"Added turn {turn_count}: user + assistant messages")
|
| 227 |
|
| 228 |
# Add recent messages to context
|
| 229 |
context_parts.extend(recent_messages)
|
| 230 |
|
| 231 |
context = "\n\n".join(context_parts)
|
| 232 |
-
logger.info(f"Built conversation context: {turn_count} recent user turns, {msgs_included} total messages, {char_count} chars")
|
| 233 |
|
| 234 |
return context
|
|
|
|
| 123 |
|
| 124 |
def build_conversation_context(messages, max_turns: int = 3, max_chars: int = 8000) -> str:
|
| 125 |
"""
|
| 126 |
+
Build conversation context from structured messages to send to generator.
|
| 127 |
Always keeps the first user and assistant messages, plus the last N turns.
|
| 128 |
|
| 129 |
A "turn" is one user message + following assistant response.
|
|
|
|
| 161 |
context_parts.append(msg_text)
|
| 162 |
char_count += msg_chars
|
| 163 |
msgs_included += 1
|
|
|
|
| 164 |
|
| 165 |
if first_assistant_msg:
|
| 166 |
msg_text = f"ASSISTANT: {first_assistant_msg.content}"
|
|
|
|
| 169 |
context_parts.append(msg_text)
|
| 170 |
char_count += msg_chars
|
| 171 |
msgs_included += 1
|
|
|
|
| 172 |
|
| 173 |
# Collect last N complete turns (user + assistant pairs)
|
| 174 |
# Find the last N user messages and their corresponding assistant responses
|
|
|
|
| 221 |
msgs_included += 1
|
| 222 |
|
| 223 |
turn_count += 1
|
|
|
|
| 224 |
|
| 225 |
# Add recent messages to context
|
| 226 |
context_parts.extend(recent_messages)
|
| 227 |
|
| 228 |
context = "\n\n".join(context_parts)
|
|
|
|
| 229 |
|
| 230 |
return context
|