Spaces:
Running
Running
import plotly.express as px | |
import streamlit as st | |
from sentence_transformers import SentenceTransformer | |
import umap.umap_ as umap | |
import pandas as pd | |
import os | |
model_name = 'sentence-transformers/all-MiniLM-L6-v2' | |
model = SentenceTransformer(model_name) | |
df_osdg = pd.read_csv('https://zenodo.org/record/5550238/files/osdg-community-dataset-v21-09-30.csv',sep='\t') | |
_lab_dict = {0: 'no_cat', | |
1:'SDG 1 - No poverty', | |
2:'SDG 2 - Zero hunger', | |
3:'SDG 3 - Good health and well-being', | |
4:'SDG 4 - Quality education', | |
5:'SDG 5 - Gender equality', | |
6:'SDG 6 - Clean water and sanitation', | |
7:'SDG 7 - Affordable and clean energy', | |
8:'SDG 8 - Decent work and economic growth', | |
9:'SDG 9 - Industry, Innovation and Infrastructure', | |
10:'SDG 10 - Reduced inequality', | |
11:'SDG 11 - Sustainable cities and communities', | |
12:'SDG 12 - Responsible consumption and production', | |
13:'SDG 13 - Climate action', | |
14:'SDG 14 - Life below water', | |
15:'SDG 15 - Life on land', | |
16:'SDG 16 - Peace, justice and strong institutions', | |
17:'SDG 17 - Partnership for the goals',} | |
labels = [_lab_dict[lab] for lab in df_osdg['sdg'] ] | |
keys = list(df_osdg['keys']) | |
docs = list(df_osdg['text']) | |
docs_embeddings = model.encode(docs) | |
n_neighbors = 15 | |
n_components = 3 | |
random_state =42 | |
umap_model = (umap.UMAP(n_neighbors=n_neighbors, | |
n_components=n_components, | |
metric='cosine', | |
random_state=random_state) | |
.fit(docs_embeddings)) | |
docs_umap = umap_model.transform(docs_embeddings) | |
st.title("SDG Embedding Visualisation") | |
fig = px.scatter_3d( | |
docs_umap, x=0, y=1, z=2, | |
color=labels, | |
opacity = .5)#, hover_data=[keys]) | |
fig.update_scenes(xaxis_visible=False, yaxis_visible=False,zaxis_visible=False ) | |
fig.update_traces(marker_size=4) | |
st.plotly_chart(fig) |