Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update auditqa/engine/vectorstore.py
Browse files
auditqa/engine/vectorstore.py
CHANGED
@@ -6,40 +6,5 @@ embeddingmodel = "BAAI/bge-small-en-v1.5"
|
|
6 |
load_dotenv()
|
7 |
HF_Token = os.environ.get("HF_TOKEN")
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
collection_name = f"collection"
|
12 |
-
|
13 |
-
if provider_retrieval_model == "HF":
|
14 |
-
qdrantClient = QdrantClient(path=client_path, prefer_grpc=True)
|
15 |
-
|
16 |
-
embeddings = HuggingFaceInferenceAPIEmbeddings(
|
17 |
-
api_key=HF_Token, model_name=embeddingmodel
|
18 |
-
)
|
19 |
-
|
20 |
-
dim = 1024
|
21 |
-
|
22 |
-
elif provider_retrieval_model == "OAI":
|
23 |
-
|
24 |
-
qdrantClient = QdrantClient(path=client_path, prefer_grpc=True)
|
25 |
-
|
26 |
-
embeddings = OpenAIEmbeddings(
|
27 |
-
model="text-embedding-ada-002",
|
28 |
-
openai_api_key=os.getenv("OPENAI_API_KEY"),
|
29 |
-
)
|
30 |
-
|
31 |
-
dim = 1536
|
32 |
-
|
33 |
-
|
34 |
-
qdrantClient.create_collection(
|
35 |
-
collection_name=collection_name,
|
36 |
-
vectors_config=VectorParams(size=dim, distance=Distance.COSINE),
|
37 |
-
)
|
38 |
-
|
39 |
-
vectorstore = Qdrant(
|
40 |
-
client=qdrantClient,
|
41 |
-
collection_name=collection_name,
|
42 |
-
embeddings=embeddings,
|
43 |
-
)
|
44 |
-
|
45 |
-
vectorstore.add_documents(docs_samp)
|
|
|
6 |
load_dotenv()
|
7 |
HF_Token = os.environ.get("HF_TOKEN")
|
8 |
|
9 |
+
def token():
|
10 |
+
print(HF_Token)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|