ppsingh commited on
Commit
58a3049
·
verified ·
1 Parent(s): 63e07ab

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -4
app.py CHANGED
@@ -9,14 +9,14 @@ from auditqa.sample_questions import QUESTIONS
9
  from auditqa.engine.prompts import audience_prompts
10
  from auditqa.reports import files, report_list
11
  from auditqa.doc_process import process_pdf, get_local_qdrant
12
- from langchain_core.messages import (
13
  HumanMessage,
14
  SystemMessage,
15
  )
16
- from langchain_huggingface import ChatHuggingFace
17
  from langchain_core.output_parsers import StrOutputParser
18
  from langchain_core.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
19
- from langchain_huggingface import HuggingFaceEndpoint
 
20
  from qdrant_client.http import models as rest
21
  #from qdrant_client import QdrantClient
22
  from dotenv import load_dotenv
@@ -193,11 +193,12 @@ async def chat(query,history,sources,reports,subtype,year):
193
 
194
  # create rag chain
195
  chat_model = ChatHuggingFace(llm=llm_qa)
 
196
  ###-------------------------- get answers ---------------------------------------
197
  answer_lst = []
198
  for question, context in zip(question_lst , context_retrieved_lst):
199
  answer = chat_model.invoke(messages)
200
- answer_lst.append(answer)
201
  docs_html = []
202
  for i, d in enumerate(context_retrieved, 1):
203
  docs_html.append(make_html_source(d, i))
 
9
  from auditqa.engine.prompts import audience_prompts
10
  from auditqa.reports import files, report_list
11
  from auditqa.doc_process import process_pdf, get_local_qdrant
12
+ from langchain.schema import (
13
  HumanMessage,
14
  SystemMessage,
15
  )
 
16
  from langchain_core.output_parsers import StrOutputParser
17
  from langchain_core.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
18
+ from langchain_community.llms import HuggingFaceEndpoint
19
+ from langchain_community.chat_models.huggingface import ChatHuggingFace
20
  from qdrant_client.http import models as rest
21
  #from qdrant_client import QdrantClient
22
  from dotenv import load_dotenv
 
193
 
194
  # create rag chain
195
  chat_model = ChatHuggingFace(llm=llm_qa)
196
+
197
  ###-------------------------- get answers ---------------------------------------
198
  answer_lst = []
199
  for question, context in zip(question_lst , context_retrieved_lst):
200
  answer = chat_model.invoke(messages)
201
+ answer_lst.append(answer.content)
202
  docs_html = []
203
  for i, d in enumerate(context_retrieved, 1):
204
  docs_html.append(make_html_source(d, i))