audit_assistant / auditqa /doc_process.py
ppsingh's picture
Update auditqa/doc_process.py
16ff9c3 verified
raw
history blame
2.67 kB
import glob
import os
from langchain.text_splitter import RecursiveCharacterTextSplitter, SentenceTransformersTokenTextSplitter
from transformers import AutoTokenizer
from torch import cuda
from langchain_community.document_loaders import PyMuPDFLoader
from langchain_community.embeddings import HuggingFaceEmbeddings, HuggingFaceInferenceAPIEmbeddings
from langchain_community.vectorstores import Qdrant
device = 'cuda' if cuda.is_available() else 'cpu'
#from dotenv import load_dotenv
#load_dotenv()
#HF_token = os.environ["HF_TOKEN"]
path_to_data = "./data/"
def process_pdf():
files = {'MWTS2021':'./data/MWTS2021.pdf',
'MWTS2022':'./data/MWTS2022.pdf',
'Consolidated2021':'./data/Consolidated2021.pdf'}
docs = {}
for file,value in files.items():
try:
docs[file] = PyMuPDFLoader(value).load()
except Exception as e:
print("Exception: ", e)
# text splitter based on the tokenizer of a model of your choosing
# to make texts fit exactly a transformer's context window size
# langchain text splitters: https://python.langchain.com/docs/modules/data_connection/document_transformers/
chunk_size = 256
text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer(
AutoTokenizer.from_pretrained("BAAI/bge-small-en-v1.5"),
chunk_size=chunk_size,
chunk_overlap=10,
add_start_index=True,
strip_whitespace=True,
separators=["\n\n", "\n"],
)
all_documents = {'Consolidated':[], 'MWTS':[]}
for file,value in docs.items():
doc_processed = text_splitter.split_documents(value)
for doc in doc_processed:
doc.metadata["source"] = file
doc.metadata["year"] = file[-4:]
for key in all_documents:
if key in file:
print(key)
all_documents[key].append(doc_processed)
for key, docs_processed in all_documents.items():
docs_processed = [item for sublist in docs_processed for item in sublist]
all_documents[key] = docs_processed
embeddings = HuggingFaceEmbeddings(
model_kwargs = {'device': device},
encode_kwargs = {'normalize_embeddings': True},
model_name="BAAI/bge-small-en-v1.5"
)
qdrant_collections = {}
for file,value in all_documents.items():
print("emebddings for:",file)
qdrant_collections[file] = Qdrant.from_documents(
value,
embeddings,
location=":memory:",
collection_name=file,
)
print("done")
return qdrant_collections