Spaces:
Sleeping
Sleeping
from huggingface_hub import InferenceClient | |
from auditqa.process_chunks import getconfig | |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler | |
from langchain_community.llms import HuggingFaceEndpoint | |
from langchain_community.chat_models.huggingface import ChatHuggingFace | |
import os | |
from dotenv import load_dotenv | |
load_dotenv() | |
model_config = getconfig("model_params.cfg") | |
NVIDIA_SERVER = os.environ["NVIDIA_SERVERLESS"] | |
HF_token = os.environ["LLAMA_3_1"] | |
def nvidia_client(): | |
""" returns the nvidia server client """ | |
client = InferenceClient( | |
base_url=model_config.get('reader','NVIDIA_ENDPOINT'), | |
api_key=NVIDIA_SERVER) | |
print("getting nvidia client") | |
return client | |
def dedicated_endpoint(): | |
""" returns the dedicated server endpoint""" | |
# Set up the streaming callback handler | |
callback = StreamingStdOutCallbackHandler() | |
# Initialize the HuggingFaceEndpoint with streaming enabled | |
llm_qa = HuggingFaceEndpoint( | |
endpoint_url=model_config.get('reader', 'DEDICATED_ENDPOINT'), | |
max_new_tokens=int(model_config.get('reader','MAX_TOKENS')), | |
repetition_penalty=1.03, | |
timeout=70, | |
huggingfacehub_api_token=HF_token, | |
streaming=True, # Enable streaming for real-time token generation | |
callbacks=[callback] # Add the streaming callback handler | |
) | |
# Create a ChatHuggingFace instance with the streaming-enabled endpoint | |
chat_model = ChatHuggingFace(llm=llm_qa) | |
print("getting dedicated endpoint wrapped in ChathuggingFace ") | |
return chat_model |