Jan Mühlnikel
changed src dir
58246cd
raw
history blame
2.51 kB
"""
Page for similarities
"""
################
# DEPENDENCIES #
################
import streamlit as st
import pandas as pd
from scipy.sparse import load_npz
import utils.similarity_table as similarity_table
import psutil
import os
def get_process_memory():
process = psutil.Process(os.getpid())
return process.memory_info().rss / (1024 * 1024)
# Catch DATA
# Load Similarity matrix
@st.cache_data
def load_sim_matrix():
loaded_matrix = load_npz("src/similarities.npz")
dense_matrix = loaded_matrix.toarray()
return dense_matrix
@st.cache_data
def load_projects():
orgas_df = pd.read_csv("src/projects/project_orgas.csv")
region_df = pd.read_csv("src/projects/project_region.csv")
sector_df = pd.read_csv("src/projects/project_sector.csv")
status_df = pd.read_csv("src/projects/project_status.csv")
texts_df = pd.read_csv("src/projects/project_texts.csv")
projects_df = pd.merge(orgas_df, region_df, on='iati_id', how='inner')
projects_df = pd.merge(projects_df, sector_df, on='iati_id', how='inner')
projects_df = pd.merge(projects_df, status_df, on='iati_id', how='inner')
projects_df = pd.merge(projects_df, texts_df, on='iati_id', how='inner')
return projects_df
# LOAD DATA
sim_matrix = load_sim_matrix()
projects_df = load_projects()
def show_page():
st.write(f"Current RAM usage of this app: {get_process_memory():.2f} MB")
st.write("Similarities")
df_subset = projects_df.head(10)
selected_index = st.selectbox('Select an entry', df_subset.index, format_func=lambda x: df_subset.loc[x, 'iati_id'])
st.write(selected_index)
# add index and similarity together
indecies = range(0, len(sim_matrix))
similarities = sim_matrix[selected_index]
zipped_sims = list(zip(indecies, similarities))
# remove all 0 similarities
filtered_sims = [(index, similarity) for index, similarity in zipped_sims if similarity != 0]
# Select and sort top 20 most similar projects
sorted_sims = sorted(filtered_sims, key=lambda x: x[1], reverse=True)
top_20_sims = sorted_sims[:20]
# create result data frame
index_list = [tup[0] for tup in top_20_sims]
print(index_list)
result_df = projects_df.iloc[index_list]
print(len(result_df))
print(len(result_df))
# add other colums to result df
similarity_list = [tup[1] for tup in top_20_sims]
result_df["similarity"] = similarity_list
similarity_table.show_table(result_df, similarity_list)