ppsingh commited on
Commit
dc55918
·
1 Parent(s): f15a168

statistics

Browse files
Files changed (2) hide show
  1. app.py +26 -11
  2. appStore/target.py +22 -14
app.py CHANGED
@@ -23,20 +23,35 @@ with st.container():
23
  st.markdown("<h2 style='text-align: center; color: black;'> Climate Policy Intelligence App </h2>", unsafe_allow_html=True)
24
  st.write(' ')
25
 
26
- # with st.expander("ℹ️ - About this app", expanded=False):
27
- # st.write(
28
- # """
29
- # Climate Policy Understanding App is an open-source\
30
- # digital tool which aims to assist policy analysts and \
31
- # other users in extracting and filtering relevant \
32
- # information from public documents.
33
- # """)
34
- # st.write("")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  apps = [processing.app, target_extraction.app, netzero.app, ghg.app,
36
  sector.app, adapmit.app]
37
- multiplier_val = int(100/len(apps))
38
  if st.button("Get the work done"):
39
- prg = st.progress(0)
40
  for i,func in enumerate(apps):
41
  func()
42
  prg.progress((i+1)*multiplier_val)
 
23
  st.markdown("<h2 style='text-align: center; color: black;'> Climate Policy Intelligence App </h2>", unsafe_allow_html=True)
24
  st.write(' ')
25
 
26
+ with st.expander("ℹ️ - About this app", expanded=False):
27
+ st.write(
28
+ """
29
+ Climate Policy Understanding App is an open-source\
30
+ digital tool which aims to assist policy analysts and \
31
+ other users in extracting and filtering relevant \
32
+ information from public documents.
33
+
34
+ What Happens in background?
35
+
36
+ - Step 1: Once the document is provided to app, it undergoes *Pre-processing*.\
37
+ In this step the document is broken into smaller paragraphs \
38
+ (based on word/sentence count).
39
+ - Step 2: The paragraphs are fed to **Target Classifier** which detects if
40
+ the paragraph contains any *Target* related information or not.
41
+ - Step 3: The paragraphs which are detected containing some target \
42
+ related information are then fed to multiple classifier to enrich the
43
+ Information Extraction.
44
+
45
+ Classifiers
46
+ - Netzero:
47
+
48
+ """)
49
+ st.write("")
50
  apps = [processing.app, target_extraction.app, netzero.app, ghg.app,
51
  sector.app, adapmit.app]
52
+ multiplier_val =100/len(apps)
53
  if st.button("Get the work done"):
54
+ prg = st.progress(0.0)
55
  for i,func in enumerate(apps):
56
  func()
57
  prg.progress((i+1)*multiplier_val)
appStore/target.py CHANGED
@@ -87,25 +87,33 @@ def target_display():
87
  hits = df[df['Target Label'] == 'TARGET']
88
  range_val = min(5,len(hits))
89
  if range_val !=0:
90
- count_df = df['Target Label'].value_counts()
91
- count_df = count_df.rename('count')
92
- count_df = count_df.rename_axis('Target Label').reset_index()
93
- count_df['Label_def'] = count_df['Target Label'].apply(lambda x: _lab_dict[x])
94
-
95
- fig = px.bar(count_df, y="Label_def", x="count", orientation='h', height=200)
96
- c1, c2 = st.columns([1,1])
97
- with c1:
98
- st.plotly_chart(fig,use_container_width= True)
99
-
100
- count_netzeo = sum(hits['Netzero Label'] == 'NETZERO')
101
  count_ghg = sum(hits['GHG Label'] == 'LABEL_2')
102
  count_economy = sum([True if 'Economy-wide' in x else False
103
  for x in hits['Sector Label']])
 
 
 
 
 
104
 
 
 
 
 
 
 
 
 
 
 
 
 
105
  with c2:
106
- st.write('**NetZero Targets**: `{}`'.format(count_netzeo))
107
- st.write('**GHG Targets**: `{}`'.format(count_ghg))
108
- st.write('**Economy-wide Targets**: `{}`'.format(count_economy))
109
  hits = hits.sort_values(by=['Relevancy'], ascending=False)
110
  st.write("")
111
  st.markdown("###### Top few Target Classified paragraph/text results ######")
 
87
  hits = df[df['Target Label'] == 'TARGET']
88
  range_val = min(5,len(hits))
89
  if range_val !=0:
90
+ count_target = sum(hits['Target Label'] == 'TARGET')
91
+ count_netzero = sum(hits['Netzero Label'] == 'NETZERO')
 
 
 
 
 
 
 
 
 
92
  count_ghg = sum(hits['GHG Label'] == 'LABEL_2')
93
  count_economy = sum([True if 'Economy-wide' in x else False
94
  for x in hits['Sector Label']])
95
+
96
+ # count_df = df['Target Label'].value_counts()
97
+ # count_df = count_df.rename('count')
98
+ # count_df = count_df.rename_axis('Target Label').reset_index()
99
+ # count_df['Label_def'] = count_df['Target Label'].apply(lambda x: _lab_dict[x])
100
 
101
+ # fig = px.bar(count_df, y="Label_def", x="count", orientation='h', height=200)
102
+ c1, c2 = st.columns([1,1])
103
+ with c1:
104
+ st.write('**Target Paragraphs**: `{}`'.format(count_target))
105
+ st.write('**NetZero Related Paragraphs**: `{}`'.format(count_netzero))
106
+
107
+ # st.plotly_chart(fig,use_container_width= True)
108
+
109
+ # count_netzero = sum(hits['Netzero Label'] == 'NETZERO')
110
+ # count_ghg = sum(hits['GHG Label'] == 'LABEL_2')
111
+ # count_economy = sum([True if 'Economy-wide' in x else False
112
+ # for x in hits['Sector Label']])
113
  with c2:
114
+ st.write('**GHG Related Paragraphs**: `{}`'.format(count_ghg))
115
+ st.write('**Economy-wide Related Paragraphs**: `{}`'.format(count_economy))
116
+
117
  hits = hits.sort_values(by=['Relevancy'], ascending=False)
118
  st.write("")
119
  st.markdown("###### Top few Target Classified paragraph/text results ######")