Spaces:
Sleeping
Sleeping
Commit
·
0c6b4cf
1
Parent(s):
675f40a
add: 16:9 crops
Browse files- crop_utils.py +603 -152
- prompts.py +8 -2
crop_utils.py
CHANGED
|
@@ -13,6 +13,8 @@ from ultralytics import YOLO
|
|
| 13 |
|
| 14 |
from prompts import remove_unwanted_prompt
|
| 15 |
|
|
|
|
|
|
|
| 16 |
|
| 17 |
def get_middle_thumbnail(input_image: Image, grid_size=(10, 10), padding=3):
|
| 18 |
"""
|
|
@@ -57,129 +59,6 @@ def get_middle_thumbnail(input_image: Image, grid_size=(10, 10), padding=3):
|
|
| 57 |
return middle_thumb
|
| 58 |
|
| 59 |
|
| 60 |
-
def get_person_bbox(frame, model):
|
| 61 |
-
"""Detect person and return the largest bounding box"""
|
| 62 |
-
results = model(frame, classes=[0]) # class 0 is person in COCO
|
| 63 |
-
|
| 64 |
-
if not results or len(results[0].boxes) == 0:
|
| 65 |
-
return None
|
| 66 |
-
|
| 67 |
-
# Get all person boxes
|
| 68 |
-
boxes = results[0].boxes.xyxy.cpu().numpy()
|
| 69 |
-
# Calculate areas to find the largest person
|
| 70 |
-
areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
|
| 71 |
-
largest_idx = np.argmax(areas)
|
| 72 |
-
|
| 73 |
-
return boxes[largest_idx]
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
def generate_crops(frame):
|
| 77 |
-
"""Generate both 16:9 and 9:16 crops based on person detection"""
|
| 78 |
-
# Load YOLO model
|
| 79 |
-
model = YOLO("yolo11n.pt")
|
| 80 |
-
|
| 81 |
-
# Convert PIL Image to cv2 format if needed
|
| 82 |
-
if isinstance(frame, Image.Image):
|
| 83 |
-
frame = cv2.cvtColor(np.array(frame), cv2.COLOR_RGB2BGR)
|
| 84 |
-
|
| 85 |
-
original_height, original_width = frame.shape[:2]
|
| 86 |
-
bbox = get_person_bbox(frame, model)
|
| 87 |
-
|
| 88 |
-
if bbox is None:
|
| 89 |
-
return None, None
|
| 90 |
-
|
| 91 |
-
# Extract coordinates
|
| 92 |
-
x1, y1, x2, y2 = map(int, bbox)
|
| 93 |
-
person_height = y2 - y1
|
| 94 |
-
person_width = x2 - x1
|
| 95 |
-
person_center_x = (x1 + x2) // 2
|
| 96 |
-
person_center_y = (y1 + y2) // 2
|
| 97 |
-
|
| 98 |
-
# Generate 16:9 crop (focus on upper body)
|
| 99 |
-
aspect_ratio_16_9 = 16 / 9
|
| 100 |
-
crop_width_16_9 = min(original_width, int(person_height * aspect_ratio_16_9))
|
| 101 |
-
crop_height_16_9 = min(original_height, int(crop_width_16_9 / aspect_ratio_16_9))
|
| 102 |
-
|
| 103 |
-
# For 16:9, center horizontally and align top with person's top
|
| 104 |
-
x1_16_9 = max(0, person_center_x - crop_width_16_9 // 2)
|
| 105 |
-
x2_16_9 = min(original_width, x1_16_9 + crop_width_16_9)
|
| 106 |
-
y1_16_9 = max(0, y1) # Start from person's top
|
| 107 |
-
y2_16_9 = min(original_height, y1_16_9 + crop_height_16_9)
|
| 108 |
-
|
| 109 |
-
# Adjust if exceeding boundaries
|
| 110 |
-
if x2_16_9 > original_width:
|
| 111 |
-
x1_16_9 = original_width - crop_width_16_9
|
| 112 |
-
x2_16_9 = original_width
|
| 113 |
-
if y2_16_9 > original_height:
|
| 114 |
-
y1_16_9 = original_height - crop_height_16_9
|
| 115 |
-
y2_16_9 = original_height
|
| 116 |
-
|
| 117 |
-
# Generate 9:16 crop (full body)
|
| 118 |
-
aspect_ratio_9_16 = 9 / 16
|
| 119 |
-
crop_width_9_16 = min(original_width, int(person_height * aspect_ratio_9_16))
|
| 120 |
-
crop_height_9_16 = min(original_height, int(crop_width_9_16 / aspect_ratio_9_16))
|
| 121 |
-
|
| 122 |
-
# For 9:16, center both horizontally and vertically
|
| 123 |
-
x1_9_16 = max(0, person_center_x - crop_width_9_16 // 2)
|
| 124 |
-
x2_9_16 = min(original_width, x1_9_16 + crop_width_9_16)
|
| 125 |
-
y1_9_16 = max(0, person_center_y - crop_height_9_16 // 2)
|
| 126 |
-
y2_9_16 = min(original_height, y1_9_16 + crop_height_9_16)
|
| 127 |
-
|
| 128 |
-
# Adjust if exceeding boundaries
|
| 129 |
-
if x2_9_16 > original_width:
|
| 130 |
-
x1_9_16 = original_width - crop_width_9_16
|
| 131 |
-
x2_9_16 = original_width
|
| 132 |
-
if y2_9_16 > original_height:
|
| 133 |
-
y1_9_16 = original_height - crop_height_9_16
|
| 134 |
-
y2_9_16 = original_height
|
| 135 |
-
|
| 136 |
-
# Create crops
|
| 137 |
-
crop_16_9 = frame[y1_16_9:y2_16_9, x1_16_9:x2_16_9]
|
| 138 |
-
crop_9_16 = frame[y1_9_16:y2_9_16, x1_9_16:x2_9_16]
|
| 139 |
-
|
| 140 |
-
# Resize to standard dimensions
|
| 141 |
-
crop_16_9 = cv2.resize(crop_16_9, (426, 240)) # 16:9 aspect ratio
|
| 142 |
-
crop_9_16 = cv2.resize(crop_9_16, (240, 426)) # 9:16 aspect ratio
|
| 143 |
-
|
| 144 |
-
return crop_16_9, crop_9_16
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
def visualize_crops(image, bbox, crops_info):
|
| 148 |
-
"""
|
| 149 |
-
Visualize original bbox and calculated crops
|
| 150 |
-
bbox: [x1, y1, x2, y2]
|
| 151 |
-
crops_info: dict with 'crop_16_9' and 'crop_9_16' coordinates
|
| 152 |
-
"""
|
| 153 |
-
viz = image.copy()
|
| 154 |
-
|
| 155 |
-
# Draw original person bbox in blue
|
| 156 |
-
cv2.rectangle(
|
| 157 |
-
viz, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), (255, 0, 0), 2
|
| 158 |
-
)
|
| 159 |
-
|
| 160 |
-
# Draw 16:9 crop in green
|
| 161 |
-
crop_16_9 = crops_info["crop_16_9"]
|
| 162 |
-
cv2.rectangle(
|
| 163 |
-
viz,
|
| 164 |
-
(int(crop_16_9["x1"]), int(crop_16_9["y1"])),
|
| 165 |
-
(int(crop_16_9["x2"]), int(crop_16_9["y2"])),
|
| 166 |
-
(0, 255, 0),
|
| 167 |
-
2,
|
| 168 |
-
)
|
| 169 |
-
|
| 170 |
-
# Draw 9:16 crop in red
|
| 171 |
-
crop_9_16 = crops_info["crop_9_16"]
|
| 172 |
-
cv2.rectangle(
|
| 173 |
-
viz,
|
| 174 |
-
(int(crop_9_16["x1"]), int(crop_9_16["y1"])),
|
| 175 |
-
(int(crop_9_16["x2"]), int(crop_9_16["y2"])),
|
| 176 |
-
(0, 0, 255),
|
| 177 |
-
2,
|
| 178 |
-
)
|
| 179 |
-
|
| 180 |
-
return viz
|
| 181 |
-
|
| 182 |
-
|
| 183 |
def encode_image_to_base64(image: Image.Image, format: str = "JPEG") -> str:
|
| 184 |
"""
|
| 185 |
Convert a PIL image to a base64 string.
|
|
@@ -421,9 +300,15 @@ def analyze_image(numbered_input_image: Image, prompt, input_image):
|
|
| 421 |
)
|
| 422 |
except Exception as e:
|
| 423 |
print(e)
|
| 424 |
-
return input_image, input_image, input_image
|
| 425 |
-
|
| 426 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 427 |
|
| 428 |
|
| 429 |
def get_sprite_firebase(cid, rsid, uid):
|
|
@@ -450,26 +335,548 @@ def get_sprite_firebase(cid, rsid, uid):
|
|
| 450 |
return data.val()
|
| 451 |
|
| 452 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 453 |
def get_image_crop(cid=None, rsid=None, uid=None):
|
| 454 |
-
"""
|
| 455 |
-
|
| 456 |
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
|
| 463 |
-
|
| 464 |
-
|
| 465 |
|
| 466 |
-
|
| 467 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 468 |
|
| 469 |
# Get the middle thumbnail
|
| 470 |
mid_image = get_middle_thumbnail(input_image)
|
| 471 |
-
mid_images.append(mid_image)
|
| 472 |
|
|
|
|
| 473 |
numbered_mid_image = add_top_numbers(
|
| 474 |
input_image=mid_image,
|
| 475 |
num_divisions=20,
|
|
@@ -478,19 +885,63 @@ def get_image_crop(cid=None, rsid=None, uid=None):
|
|
| 478 |
dot_spacing=20,
|
| 479 |
)
|
| 480 |
|
| 481 |
-
|
| 482 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 483 |
)
|
| 484 |
-
cropped_image_16_9s.append(cropped_image_16_9)
|
| 485 |
-
images_with_lines.append(image_with_lines)
|
| 486 |
-
cropped_image_9_16s.append(cropped_image_9_16)
|
| 487 |
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
from prompts import remove_unwanted_prompt
|
| 15 |
|
| 16 |
+
model = YOLO("yolo11n.pt")
|
| 17 |
+
|
| 18 |
|
| 19 |
def get_middle_thumbnail(input_image: Image, grid_size=(10, 10), padding=3):
|
| 20 |
"""
|
|
|
|
| 59 |
return middle_thumb
|
| 60 |
|
| 61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
def encode_image_to_base64(image: Image.Image, format: str = "JPEG") -> str:
|
| 63 |
"""
|
| 64 |
Convert a PIL image to a base64 string.
|
|
|
|
| 300 |
)
|
| 301 |
except Exception as e:
|
| 302 |
print(e)
|
| 303 |
+
return input_image, input_image, input_image, 0, 20
|
| 304 |
+
|
| 305 |
+
return (
|
| 306 |
+
cropped_image_16_9,
|
| 307 |
+
image_with_lines,
|
| 308 |
+
cropped_image_9_16,
|
| 309 |
+
response_json["left_row"],
|
| 310 |
+
response_json["right_row"],
|
| 311 |
+
)
|
| 312 |
|
| 313 |
|
| 314 |
def get_sprite_firebase(cid, rsid, uid):
|
|
|
|
| 335 |
return data.val()
|
| 336 |
|
| 337 |
|
| 338 |
+
def find_persons_center(image):
|
| 339 |
+
"""
|
| 340 |
+
Find the center point of all persons in the image.
|
| 341 |
+
If multiple persons are detected, merge all bounding boxes and find the center.
|
| 342 |
+
|
| 343 |
+
Args:
|
| 344 |
+
image: CV2/numpy array image
|
| 345 |
+
|
| 346 |
+
Returns:
|
| 347 |
+
int: x-coordinate of the center point of all persons
|
| 348 |
+
"""
|
| 349 |
+
# Detect persons (class 0 in COCO dataset)
|
| 350 |
+
results = model(image, classes=[0])
|
| 351 |
+
|
| 352 |
+
if not results or len(results[0].boxes) == 0:
|
| 353 |
+
# If no persons detected, return center of image
|
| 354 |
+
return image.shape[1] // 2
|
| 355 |
+
|
| 356 |
+
# Get all person boxes
|
| 357 |
+
boxes = results[0].boxes.xyxy.cpu().numpy()
|
| 358 |
+
|
| 359 |
+
# Print the number of persons detected (for debugging)
|
| 360 |
+
print(f"Detected {len(boxes)} persons in the image")
|
| 361 |
+
|
| 362 |
+
if len(boxes) == 1:
|
| 363 |
+
# If only one person, return center of their bounding box
|
| 364 |
+
x1, _, x2, _ = boxes[0]
|
| 365 |
+
center_x = int((x1 + x2) // 2)
|
| 366 |
+
print(f"Single person detected at center x: {center_x}")
|
| 367 |
+
return center_x
|
| 368 |
+
else:
|
| 369 |
+
# Multiple persons - create a merged bounding box
|
| 370 |
+
left_x = min(box[0] for box in boxes)
|
| 371 |
+
right_x = max(box[2] for box in boxes)
|
| 372 |
+
merged_center_x = int((left_x + right_x) // 2)
|
| 373 |
+
|
| 374 |
+
print(f"Multiple persons merged bounding box center x: {merged_center_x}")
|
| 375 |
+
print(f"Merged bounds: left={left_x}, right={right_x}")
|
| 376 |
+
|
| 377 |
+
return merged_center_x
|
| 378 |
+
|
| 379 |
+
|
| 380 |
+
def create_layouts(image, left_division, right_division):
|
| 381 |
+
"""
|
| 382 |
+
Create different layout variations of the image using half, one-third, and two-thirds width.
|
| 383 |
+
All layout variations will be centered on detected persons, including 16:9 and 9:16 crops.
|
| 384 |
+
|
| 385 |
+
Args:
|
| 386 |
+
image: PIL Image
|
| 387 |
+
left_division: Left division index (1-20)
|
| 388 |
+
right_division: Right division index (1-20)
|
| 389 |
+
|
| 390 |
+
Returns:
|
| 391 |
+
tuple: (list of layout variations, cutout_image, cutout_16_9, cutout_9_16)
|
| 392 |
+
"""
|
| 393 |
+
# Convert PIL Image to cv2 format
|
| 394 |
+
if isinstance(image, Image.Image):
|
| 395 |
+
image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
| 396 |
+
else:
|
| 397 |
+
image_cv = image.copy()
|
| 398 |
+
|
| 399 |
+
# Get image dimensions
|
| 400 |
+
height, width = image_cv.shape[:2]
|
| 401 |
+
|
| 402 |
+
# Calculate division width and crop boundaries
|
| 403 |
+
division_width = width / 20 # Assuming 20 divisions
|
| 404 |
+
left_boundary = int((left_division - 1) * division_width)
|
| 405 |
+
right_boundary = int(right_division * division_width)
|
| 406 |
+
|
| 407 |
+
# 1. Create cutout image based on divisions
|
| 408 |
+
cutout_image = image_cv[:, left_boundary:right_boundary].copy()
|
| 409 |
+
cutout_width = right_boundary - left_boundary
|
| 410 |
+
cutout_height = cutout_image.shape[0]
|
| 411 |
+
|
| 412 |
+
# 2. Run YOLO on cutout to get person bounding box and center
|
| 413 |
+
results = model(cutout_image, classes=[0])
|
| 414 |
+
|
| 415 |
+
# Default center if no detection
|
| 416 |
+
cutout_center_x = cutout_image.shape[1] // 2
|
| 417 |
+
cutout_center_y = cutout_height // 2
|
| 418 |
+
|
| 419 |
+
# Default values for bounding box
|
| 420 |
+
person_top = 0.0
|
| 421 |
+
person_height = float(cutout_height)
|
| 422 |
+
|
| 423 |
+
if results and len(results[0].boxes) > 0:
|
| 424 |
+
# Get person detection
|
| 425 |
+
boxes = results[0].boxes.xyxy.cpu().numpy()
|
| 426 |
+
|
| 427 |
+
if len(boxes) == 1:
|
| 428 |
+
# Single person
|
| 429 |
+
x1, y1, x2, y2 = boxes[0]
|
| 430 |
+
cutout_center_x = int((x1 + x2) // 2)
|
| 431 |
+
cutout_center_y = int((y1 + y2) // 2)
|
| 432 |
+
person_top = y1
|
| 433 |
+
person_height = y2 - y1
|
| 434 |
+
else:
|
| 435 |
+
# Multiple persons - merge bounding boxes
|
| 436 |
+
left_x = min(box[0] for box in boxes)
|
| 437 |
+
right_x = max(box[2] for box in boxes)
|
| 438 |
+
top_y = min(box[1] for box in boxes) # Top of highest person
|
| 439 |
+
bottom_y = max(box[3] for box in boxes) # Bottom of lowest person
|
| 440 |
+
|
| 441 |
+
cutout_center_x = int((left_x + right_x) // 2)
|
| 442 |
+
cutout_center_y = int((top_y + bottom_y) // 2)
|
| 443 |
+
person_top = top_y
|
| 444 |
+
person_height = bottom_y - top_y
|
| 445 |
+
|
| 446 |
+
# 3. Create 16:9 and 9:16 versions with person properly framed
|
| 447 |
+
aspect_16_9 = 16 / 9
|
| 448 |
+
aspect_9_16 = 9 / 16
|
| 449 |
+
|
| 450 |
+
# For 16:9 version (with 20% margin above person)
|
| 451 |
+
target_height_16_9 = int(cutout_width / aspect_16_9)
|
| 452 |
+
if target_height_16_9 <= cutout_height:
|
| 453 |
+
# Calculate 20% of person height for top margin
|
| 454 |
+
top_margin = int(person_height * 0.2)
|
| 455 |
+
|
| 456 |
+
# Start 20% above the person's top
|
| 457 |
+
y_start = int(max(0, person_top - top_margin))
|
| 458 |
+
|
| 459 |
+
# If this would make the crop exceed the bottom, adjust y_start
|
| 460 |
+
if y_start + target_height_16_9 > cutout_height:
|
| 461 |
+
y_start = int(max(0, cutout_height - target_height_16_9))
|
| 462 |
+
|
| 463 |
+
y_end = int(min(cutout_height, y_start + target_height_16_9))
|
| 464 |
+
cutout_16_9 = cutout_image[y_start:y_end, :].copy()
|
| 465 |
+
else:
|
| 466 |
+
# Handle rare case where we need to adjust width (not expected with normal images)
|
| 467 |
+
new_width = int(cutout_height * aspect_16_9)
|
| 468 |
+
x_start = max(
|
| 469 |
+
0, min(cutout_width - new_width, cutout_center_x - new_width // 2)
|
| 470 |
+
)
|
| 471 |
+
x_end = min(cutout_width, x_start + new_width)
|
| 472 |
+
cutout_16_9 = cutout_image[:, x_start:x_end].copy()
|
| 473 |
+
|
| 474 |
+
# For 9:16 version (centered on person)
|
| 475 |
+
target_width_9_16 = int(cutout_height * aspect_9_16)
|
| 476 |
+
if target_width_9_16 <= cutout_width:
|
| 477 |
+
# Center horizontally around person
|
| 478 |
+
x_start = int(
|
| 479 |
+
max(
|
| 480 |
+
0,
|
| 481 |
+
min(
|
| 482 |
+
cutout_width - target_width_9_16,
|
| 483 |
+
cutout_center_x - target_width_9_16 // 2,
|
| 484 |
+
),
|
| 485 |
+
)
|
| 486 |
+
)
|
| 487 |
+
x_end = int(min(cutout_width, x_start + target_width_9_16))
|
| 488 |
+
cutout_9_16 = cutout_image[:, x_start:x_end].copy()
|
| 489 |
+
else:
|
| 490 |
+
# Handle rare case where we need to adjust height
|
| 491 |
+
new_height = int(cutout_width / aspect_9_16)
|
| 492 |
+
y_start = int(
|
| 493 |
+
max(0, min(cutout_height - new_height, cutout_center_y - new_height // 2))
|
| 494 |
+
)
|
| 495 |
+
y_end = int(min(cutout_height, y_start + new_height))
|
| 496 |
+
cutout_9_16 = cutout_image[y_start:y_end, :].copy()
|
| 497 |
+
|
| 498 |
+
# 4. Scale the center back to original image coordinates
|
| 499 |
+
original_center_x = left_boundary + cutout_center_x
|
| 500 |
+
|
| 501 |
+
# 5. Create layout variations on the original image centered on persons
|
| 502 |
+
# Half width layout
|
| 503 |
+
half_width = width // 2
|
| 504 |
+
half_left_x = max(0, min(width - half_width, original_center_x - half_width // 2))
|
| 505 |
+
half_right_x = half_left_x + half_width
|
| 506 |
+
half_width_crop = image_cv[:, half_left_x:half_right_x].copy()
|
| 507 |
+
|
| 508 |
+
# Third width layout
|
| 509 |
+
third_width = width // 3
|
| 510 |
+
third_left_x = max(
|
| 511 |
+
0, min(width - third_width, original_center_x - third_width // 2)
|
| 512 |
+
)
|
| 513 |
+
third_right_x = third_left_x + third_width
|
| 514 |
+
third_width_crop = image_cv[:, third_left_x:third_right_x].copy()
|
| 515 |
+
|
| 516 |
+
# Two-thirds width layout
|
| 517 |
+
two_thirds_width = (width * 2) // 3
|
| 518 |
+
two_thirds_left_x = max(
|
| 519 |
+
0, min(width - two_thirds_width, original_center_x - two_thirds_width // 2)
|
| 520 |
+
)
|
| 521 |
+
two_thirds_right_x = two_thirds_left_x + two_thirds_width
|
| 522 |
+
two_thirds_crop = image_cv[:, two_thirds_left_x:two_thirds_right_x].copy()
|
| 523 |
+
|
| 524 |
+
# Add labels to all crops
|
| 525 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
| 526 |
+
label_settings = {
|
| 527 |
+
"fontScale": 1.0,
|
| 528 |
+
"fontFace": 1,
|
| 529 |
+
"thickness": 2,
|
| 530 |
+
}
|
| 531 |
+
|
| 532 |
+
# Draw label backgrounds for better visibility
|
| 533 |
+
def add_label(img, label):
|
| 534 |
+
# Draw background for text
|
| 535 |
+
text_size = cv2.getTextSize(
|
| 536 |
+
label, **{k: v for k, v in label_settings.items() if k != "color"}
|
| 537 |
+
)
|
| 538 |
+
cv2.rectangle(
|
| 539 |
+
img,
|
| 540 |
+
(10, 10),
|
| 541 |
+
(10 + text_size[0][0] + 10, 10 + text_size[0][1] + 10),
|
| 542 |
+
(0, 0, 0),
|
| 543 |
+
-1,
|
| 544 |
+
) # Black background
|
| 545 |
+
# Draw text
|
| 546 |
+
cv2.putText(
|
| 547 |
+
img,
|
| 548 |
+
label,
|
| 549 |
+
(15, 15 + text_size[0][1]),
|
| 550 |
+
**label_settings,
|
| 551 |
+
color=(255, 255, 255),
|
| 552 |
+
lineType=cv2.LINE_AA,
|
| 553 |
+
)
|
| 554 |
+
return img
|
| 555 |
+
|
| 556 |
+
cutout_image = add_label(cutout_image, "Cutout")
|
| 557 |
+
cutout_16_9 = add_label(cutout_16_9, "16:9")
|
| 558 |
+
cutout_9_16 = add_label(cutout_9_16, "9:16")
|
| 559 |
+
half_width_crop = add_label(half_width_crop, "Half Width")
|
| 560 |
+
third_width_crop = add_label(third_width_crop, "Third Width")
|
| 561 |
+
two_thirds_crop = add_label(two_thirds_crop, "Two-Thirds Width")
|
| 562 |
+
|
| 563 |
+
# Convert all output images to PIL format
|
| 564 |
+
layout_crops = []
|
| 565 |
+
for layout, label in [
|
| 566 |
+
(half_width_crop, "Half Width"),
|
| 567 |
+
(third_width_crop, "Third Width"),
|
| 568 |
+
(two_thirds_crop, "Two-Thirds Width"),
|
| 569 |
+
]:
|
| 570 |
+
pil_layout = Image.fromarray(cv2.cvtColor(layout, cv2.COLOR_BGR2RGB))
|
| 571 |
+
layout_crops.append(pil_layout)
|
| 572 |
+
|
| 573 |
+
cutout_pil = Image.fromarray(cv2.cvtColor(cutout_image, cv2.COLOR_BGR2RGB))
|
| 574 |
+
cutout_16_9_pil = Image.fromarray(cv2.cvtColor(cutout_16_9, cv2.COLOR_BGR2RGB))
|
| 575 |
+
cutout_9_16_pil = Image.fromarray(cv2.cvtColor(cutout_9_16, cv2.COLOR_BGR2RGB))
|
| 576 |
+
|
| 577 |
+
return layout_crops, cutout_pil, cutout_16_9_pil, cutout_9_16_pil
|
| 578 |
+
|
| 579 |
+
|
| 580 |
+
def draw_all_crops_on_original(image, left_division, right_division):
|
| 581 |
+
"""
|
| 582 |
+
Create a visualization showing all crop regions overlaid on the original image.
|
| 583 |
+
Each crop region is outlined with a different color and labeled.
|
| 584 |
+
All crops are centered on the person's center point.
|
| 585 |
+
|
| 586 |
+
Args:
|
| 587 |
+
image: PIL Image
|
| 588 |
+
left_division: Left division index (1-20)
|
| 589 |
+
right_division: Right division index (1-20)
|
| 590 |
+
|
| 591 |
+
Returns:
|
| 592 |
+
PIL Image: Original image with all crop regions visualized
|
| 593 |
+
"""
|
| 594 |
+
# Convert PIL Image to cv2 format
|
| 595 |
+
if isinstance(image, Image.Image):
|
| 596 |
+
image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
| 597 |
+
else:
|
| 598 |
+
image_cv = image.copy()
|
| 599 |
+
|
| 600 |
+
# Get a clean copy for drawing
|
| 601 |
+
visualization = image_cv.copy()
|
| 602 |
+
|
| 603 |
+
# Get image dimensions
|
| 604 |
+
height, width = image_cv.shape[:2]
|
| 605 |
+
|
| 606 |
+
# Calculate division width and crop boundaries
|
| 607 |
+
division_width = width / 20 # Assuming 20 divisions
|
| 608 |
+
left_boundary = int((left_division - 1) * division_width)
|
| 609 |
+
right_boundary = int(right_division * division_width)
|
| 610 |
+
|
| 611 |
+
# Find person bounding box and center in cutout
|
| 612 |
+
cutout_image = image_cv[:, left_boundary:right_boundary].copy()
|
| 613 |
+
|
| 614 |
+
# Get YOLO detections for person bounding box
|
| 615 |
+
results = model(cutout_image, classes=[0])
|
| 616 |
+
|
| 617 |
+
# Default values
|
| 618 |
+
cutout_center_x = cutout_image.shape[1] // 2
|
| 619 |
+
cutout_center_y = cutout_image.shape[0] // 2
|
| 620 |
+
person_top = 0.0
|
| 621 |
+
person_height = float(cutout_image.shape[0])
|
| 622 |
+
|
| 623 |
+
if results and len(results[0].boxes) > 0:
|
| 624 |
+
# Get person detection
|
| 625 |
+
boxes = results[0].boxes.xyxy.cpu().numpy()
|
| 626 |
+
|
| 627 |
+
if len(boxes) == 1:
|
| 628 |
+
# Single person
|
| 629 |
+
x1, y1, x2, y2 = boxes[0]
|
| 630 |
+
cutout_center_x = int((x1 + x2) // 2)
|
| 631 |
+
cutout_center_y = int((y1 + y2) // 2)
|
| 632 |
+
person_top = y1
|
| 633 |
+
person_height = y2 - y1
|
| 634 |
+
else:
|
| 635 |
+
# Multiple persons - merge bounding boxes
|
| 636 |
+
left_x = min(box[0] for box in boxes)
|
| 637 |
+
right_x = max(box[2] for box in boxes)
|
| 638 |
+
top_y = min(box[1] for box in boxes) # Top of highest person
|
| 639 |
+
bottom_y = max(box[3] for box in boxes) # Bottom of lowest person
|
| 640 |
+
|
| 641 |
+
cutout_center_x = int((left_x + right_x) // 2)
|
| 642 |
+
cutout_center_y = int((top_y + bottom_y) // 2)
|
| 643 |
+
person_top = top_y
|
| 644 |
+
person_height = bottom_y - top_y
|
| 645 |
+
|
| 646 |
+
# Scale back to original image
|
| 647 |
+
original_center_x = left_boundary + cutout_center_x
|
| 648 |
+
original_center_y = cutout_center_y
|
| 649 |
+
original_person_top = (
|
| 650 |
+
person_top # Already in original image space since we didn't crop vertically
|
| 651 |
+
)
|
| 652 |
+
original_person_height = person_height # Same in original space
|
| 653 |
+
|
| 654 |
+
# Define colors for different crops (BGR format)
|
| 655 |
+
colors = {
|
| 656 |
+
"cutout": (0, 165, 255), # Orange
|
| 657 |
+
"16:9": (0, 255, 0), # Green
|
| 658 |
+
"9:16": (255, 0, 0), # Blue
|
| 659 |
+
"half": (255, 255, 0), # Cyan
|
| 660 |
+
"third": (255, 0, 255), # Magenta
|
| 661 |
+
"two_thirds": (0, 255, 255), # Yellow
|
| 662 |
+
}
|
| 663 |
+
|
| 664 |
+
# Define line thickness and font
|
| 665 |
+
thickness = 3
|
| 666 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
| 667 |
+
font_scale = 0.8
|
| 668 |
+
font_thickness = 2
|
| 669 |
+
|
| 670 |
+
# 1. Draw cutout region (original divisions)
|
| 671 |
+
cv2.rectangle(
|
| 672 |
+
visualization,
|
| 673 |
+
(left_boundary, 0),
|
| 674 |
+
(right_boundary, height),
|
| 675 |
+
colors["cutout"],
|
| 676 |
+
thickness,
|
| 677 |
+
)
|
| 678 |
+
cv2.putText(
|
| 679 |
+
visualization,
|
| 680 |
+
"Cutout",
|
| 681 |
+
(left_boundary + 5, 30),
|
| 682 |
+
font,
|
| 683 |
+
font_scale,
|
| 684 |
+
colors["cutout"],
|
| 685 |
+
font_thickness,
|
| 686 |
+
)
|
| 687 |
+
|
| 688 |
+
# 2. Create 16:9 and 9:16 versions of the cutout - CENTERED on person
|
| 689 |
+
cutout_width = right_boundary - left_boundary
|
| 690 |
+
cutout_height = height
|
| 691 |
+
|
| 692 |
+
# For 16:9 version with 20% margin above person
|
| 693 |
+
aspect_16_9 = 16 / 9
|
| 694 |
+
target_height_16_9 = int(cutout_width / aspect_16_9)
|
| 695 |
+
if target_height_16_9 <= height:
|
| 696 |
+
# Calculate 20% of person height for top margin
|
| 697 |
+
top_margin = int(original_person_height * 0.2)
|
| 698 |
+
|
| 699 |
+
# Start 20% above the person's top
|
| 700 |
+
y_start = int(max(0, original_person_top - top_margin))
|
| 701 |
+
|
| 702 |
+
# If this would make the crop exceed the bottom, adjust y_start
|
| 703 |
+
if y_start + target_height_16_9 > height:
|
| 704 |
+
y_start = int(max(0, height - target_height_16_9))
|
| 705 |
+
|
| 706 |
+
y_end = int(min(height, y_start + target_height_16_9))
|
| 707 |
+
|
| 708 |
+
cv2.rectangle(
|
| 709 |
+
visualization,
|
| 710 |
+
(left_boundary, y_start),
|
| 711 |
+
(right_boundary, y_end),
|
| 712 |
+
colors["16:9"],
|
| 713 |
+
thickness,
|
| 714 |
+
)
|
| 715 |
+
cv2.putText(
|
| 716 |
+
visualization,
|
| 717 |
+
"16:9",
|
| 718 |
+
(left_boundary + 5, y_start + 30),
|
| 719 |
+
font,
|
| 720 |
+
font_scale,
|
| 721 |
+
colors["16:9"],
|
| 722 |
+
font_thickness,
|
| 723 |
+
)
|
| 724 |
+
|
| 725 |
+
# For 9:16 version centered on person
|
| 726 |
+
aspect_9_16 = 9 / 16
|
| 727 |
+
target_width_9_16 = int(cutout_height * aspect_9_16)
|
| 728 |
+
if target_width_9_16 <= cutout_width:
|
| 729 |
+
# Center horizontally around person
|
| 730 |
+
x_start = max(
|
| 731 |
+
0,
|
| 732 |
+
min(
|
| 733 |
+
left_boundary + cutout_width - target_width_9_16,
|
| 734 |
+
original_center_x - target_width_9_16 // 2,
|
| 735 |
+
),
|
| 736 |
+
)
|
| 737 |
+
x_end = x_start + target_width_9_16
|
| 738 |
+
cv2.rectangle(
|
| 739 |
+
visualization, (x_start, 0), (x_end, height), colors["9:16"], thickness
|
| 740 |
+
)
|
| 741 |
+
cv2.putText(
|
| 742 |
+
visualization,
|
| 743 |
+
"9:16",
|
| 744 |
+
(x_start + 5, 60),
|
| 745 |
+
font,
|
| 746 |
+
font_scale,
|
| 747 |
+
colors["9:16"],
|
| 748 |
+
font_thickness,
|
| 749 |
+
)
|
| 750 |
+
|
| 751 |
+
# 3. Draw centered layout variations
|
| 752 |
+
# Half width layout
|
| 753 |
+
half_width = width // 2
|
| 754 |
+
half_left_x = max(0, min(width - half_width, original_center_x - half_width // 2))
|
| 755 |
+
half_right_x = half_left_x + half_width
|
| 756 |
+
cv2.rectangle(
|
| 757 |
+
visualization,
|
| 758 |
+
(half_left_x, 0),
|
| 759 |
+
(half_right_x, height),
|
| 760 |
+
colors["half"],
|
| 761 |
+
thickness,
|
| 762 |
+
)
|
| 763 |
+
cv2.putText(
|
| 764 |
+
visualization,
|
| 765 |
+
"Half Width",
|
| 766 |
+
(half_left_x + 5, 90),
|
| 767 |
+
font,
|
| 768 |
+
font_scale,
|
| 769 |
+
colors["half"],
|
| 770 |
+
font_thickness,
|
| 771 |
+
)
|
| 772 |
+
|
| 773 |
+
# Third width layout
|
| 774 |
+
third_width = width // 3
|
| 775 |
+
third_left_x = max(
|
| 776 |
+
0, min(width - third_width, original_center_x - third_width // 2)
|
| 777 |
+
)
|
| 778 |
+
third_right_x = third_left_x + third_width
|
| 779 |
+
cv2.rectangle(
|
| 780 |
+
visualization,
|
| 781 |
+
(third_left_x, 0),
|
| 782 |
+
(third_right_x, height),
|
| 783 |
+
colors["third"],
|
| 784 |
+
thickness,
|
| 785 |
+
)
|
| 786 |
+
cv2.putText(
|
| 787 |
+
visualization,
|
| 788 |
+
"Third Width",
|
| 789 |
+
(third_left_x + 5, 120),
|
| 790 |
+
font,
|
| 791 |
+
font_scale,
|
| 792 |
+
colors["third"],
|
| 793 |
+
font_thickness,
|
| 794 |
+
)
|
| 795 |
+
|
| 796 |
+
# Two-thirds width layout
|
| 797 |
+
two_thirds_width = (width * 2) // 3
|
| 798 |
+
two_thirds_left_x = max(
|
| 799 |
+
0, min(width - two_thirds_width, original_center_x - two_thirds_width // 2)
|
| 800 |
+
)
|
| 801 |
+
two_thirds_right_x = two_thirds_left_x + two_thirds_width
|
| 802 |
+
cv2.rectangle(
|
| 803 |
+
visualization,
|
| 804 |
+
(two_thirds_left_x, 0),
|
| 805 |
+
(two_thirds_right_x, height),
|
| 806 |
+
colors["two_thirds"],
|
| 807 |
+
thickness,
|
| 808 |
+
)
|
| 809 |
+
cv2.putText(
|
| 810 |
+
visualization,
|
| 811 |
+
"Two-Thirds Width",
|
| 812 |
+
(two_thirds_left_x + 5, 150),
|
| 813 |
+
font,
|
| 814 |
+
font_scale,
|
| 815 |
+
colors["two_thirds"],
|
| 816 |
+
font_thickness,
|
| 817 |
+
)
|
| 818 |
+
|
| 819 |
+
# 4. Draw center point of person(s)
|
| 820 |
+
center_radius = 8
|
| 821 |
+
cv2.circle(
|
| 822 |
+
visualization,
|
| 823 |
+
(original_center_x, height // 2),
|
| 824 |
+
center_radius,
|
| 825 |
+
(255, 255, 255),
|
| 826 |
+
-1,
|
| 827 |
+
)
|
| 828 |
+
cv2.circle(
|
| 829 |
+
visualization, (original_center_x, height // 2), center_radius, (0, 0, 0), 2
|
| 830 |
+
)
|
| 831 |
+
cv2.putText(
|
| 832 |
+
visualization,
|
| 833 |
+
"Person Center",
|
| 834 |
+
(original_center_x + 10, height // 2),
|
| 835 |
+
font,
|
| 836 |
+
font_scale,
|
| 837 |
+
(255, 255, 255),
|
| 838 |
+
font_thickness,
|
| 839 |
+
)
|
| 840 |
+
|
| 841 |
+
# Convert back to PIL format
|
| 842 |
+
visualization_pil = Image.fromarray(cv2.cvtColor(visualization, cv2.COLOR_BGR2RGB))
|
| 843 |
+
|
| 844 |
+
return visualization_pil
|
| 845 |
+
|
| 846 |
+
|
| 847 |
def get_image_crop(cid=None, rsid=None, uid=None):
|
| 848 |
+
"""
|
| 849 |
+
Function that returns both 16:9 and 9:16 crops and layout variations for visualization.
|
| 850 |
|
| 851 |
+
Returns:
|
| 852 |
+
gr.Gallery: Gallery of all generated images
|
| 853 |
+
"""
|
| 854 |
+
# Uncomment this line when using Firebase
|
| 855 |
+
# image_paths = get_sprite_firebase(cid, rsid, uid)
|
| 856 |
|
| 857 |
+
# For testing, use a local image path
|
| 858 |
+
image_paths = ["sprite1.jpg", "sprite2.jpg"]
|
| 859 |
|
| 860 |
+
# Lists to store all images
|
| 861 |
+
all_images = []
|
| 862 |
+
all_captions = []
|
| 863 |
+
|
| 864 |
+
for image_path in image_paths:
|
| 865 |
+
# Load image (from local file or URL)
|
| 866 |
+
try:
|
| 867 |
+
if image_path.startswith(("http://", "https://")):
|
| 868 |
+
response = requests.get(image_path)
|
| 869 |
+
input_image = Image.open(BytesIO(response.content))
|
| 870 |
+
else:
|
| 871 |
+
input_image = Image.open(image_path)
|
| 872 |
+
except Exception as e:
|
| 873 |
+
print(f"Error loading image {image_path}: {e}")
|
| 874 |
+
continue
|
| 875 |
|
| 876 |
# Get the middle thumbnail
|
| 877 |
mid_image = get_middle_thumbnail(input_image)
|
|
|
|
| 878 |
|
| 879 |
+
# Add numbered divisions for GPT-4V analysis
|
| 880 |
numbered_mid_image = add_top_numbers(
|
| 881 |
input_image=mid_image,
|
| 882 |
num_divisions=20,
|
|
|
|
| 885 |
dot_spacing=20,
|
| 886 |
)
|
| 887 |
|
| 888 |
+
# Analyze the image to get optimal crop divisions
|
| 889 |
+
# This uses GPT-4V to identify the optimal crop points
|
| 890 |
+
(
|
| 891 |
+
_,
|
| 892 |
+
_,
|
| 893 |
+
_,
|
| 894 |
+
left_division,
|
| 895 |
+
right_division,
|
| 896 |
+
) = analyze_image(numbered_mid_image, remove_unwanted_prompt(2), mid_image)
|
| 897 |
+
|
| 898 |
+
# Safety check for divisions
|
| 899 |
+
if left_division <= 0:
|
| 900 |
+
left_division = 1
|
| 901 |
+
if right_division > 20:
|
| 902 |
+
right_division = 20
|
| 903 |
+
if left_division >= right_division:
|
| 904 |
+
left_division = 1
|
| 905 |
+
right_division = 20
|
| 906 |
+
|
| 907 |
+
print(f"Using divisions: left={left_division}, right={right_division}")
|
| 908 |
+
|
| 909 |
+
# Create layouts and cutouts
|
| 910 |
+
layouts, cutout_image, cutout_16_9, cutout_9_16 = create_layouts(
|
| 911 |
+
mid_image, left_division, right_division
|
| 912 |
)
|
|
|
|
|
|
|
|
|
|
| 913 |
|
| 914 |
+
# Create the visualization with all crops overlaid on original
|
| 915 |
+
all_crops_visualization = draw_all_crops_on_original(
|
| 916 |
+
mid_image, left_division, right_division
|
| 917 |
+
)
|
| 918 |
+
|
| 919 |
+
# Start with the visualization showing all crops
|
| 920 |
+
all_images.append(all_crops_visualization)
|
| 921 |
+
all_captions.append(f"All Crops Visualization {all_crops_visualization.size}")
|
| 922 |
+
|
| 923 |
+
# Add input and middle image to gallery
|
| 924 |
+
all_images.append(input_image)
|
| 925 |
+
all_captions.append(f"Input Image {input_image.size}")
|
| 926 |
+
|
| 927 |
+
all_images.append(mid_image)
|
| 928 |
+
all_captions.append(f"Middle Thumbnail {mid_image.size}")
|
| 929 |
+
|
| 930 |
+
# Add cutout images to gallery
|
| 931 |
+
all_images.append(cutout_image)
|
| 932 |
+
all_captions.append(f"Cutout Image {cutout_image.size}")
|
| 933 |
+
|
| 934 |
+
all_images.append(cutout_16_9)
|
| 935 |
+
all_captions.append(f"16:9 Crop {cutout_16_9.size}")
|
| 936 |
+
|
| 937 |
+
all_images.append(cutout_9_16)
|
| 938 |
+
all_captions.append(f"9:16 Crop {cutout_9_16.size}")
|
| 939 |
+
|
| 940 |
+
# Add layout variations
|
| 941 |
+
for i, layout in enumerate(layouts):
|
| 942 |
+
label = ["Half Width", "Third Width", "Two-Thirds Width"][i]
|
| 943 |
+
all_images.append(layout)
|
| 944 |
+
all_captions.append(f"{label} {layout.size}")
|
| 945 |
+
|
| 946 |
+
# Return gallery with all images
|
| 947 |
+
return gr.Gallery(value=list(zip(all_images, all_captions)))
|
prompts.py
CHANGED
|
@@ -153,5 +153,11 @@ If the user provides the correct call type, use the correct_call_type function t
|
|
| 153 |
|
| 154 |
def remove_unwanted_prompt(number_of_speakers: int):
|
| 155 |
if number_of_speakers == 2:
|
| 156 |
-
return """I want to crop this image
|
| 157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
|
| 154 |
def remove_unwanted_prompt(number_of_speakers: int):
|
| 155 |
if number_of_speakers == 2:
|
| 156 |
+
return """I want to crop this image only when absolutely necessary to remove partial objects or humans.
|
| 157 |
+
|
| 158 |
+
Please analyze the image and tell me:
|
| 159 |
+
1. The column number (1-20) on the left side where I should start the crop. Only suggest cropping (columns 1-4) if there are clear partial objects or humans that need removal. If no cropping is needed on the left, return 1.
|
| 160 |
+
|
| 161 |
+
2. The column number (1-20) on the right side where I should end the crop. Only suggest cropping (columns 17-20) if there are clear partial objects or humans that need removal. If no cropping is needed on the right, return 20.
|
| 162 |
+
|
| 163 |
+
I'm looking for minimal cropping - only cut when absolutely necessary to remove distracting partial elements."""
|