GIFify_OpenCV / app.py
GDavila's picture
Update app.py
9c6a4cd
raw
history blame
3.22 kB
import streamlit as st
import cv2
import numpy as np
from PIL import Image
color_step = st.slider('color_step', value=10, min_value=1, max_value=179, step=1)
#duration of each frame of the gif in milliseconds
duration_parameter = st.slider('duration_parameter aka duration of each frame of the gif in milliseconds', value=10, min_value=1, max_value=2000, step=10)
#Loop parameter = number of times gif loops. 0 = loops infinitely.
loop_parameter = st.slider('Loop parameter aka number of times gif loops', value=0, min_value=0, max_value=10, step=1)
if color_step == 0:
my_hue_list = [0]
else:
my_hue_list = list( range(0, 180, color_step) ) #Color step basically gives step range of this list, ie if color_step = 2 then it is [0,2,4,6,....,178]
user_image_object = st.file_uploader("upload your image", type=['png', 'jpg'], accept_multiple_files=False)
if user_image_object is not None:
st.image(user_image_object )
user_image_name = "input_image.png"
#re-encode for streamlit interface
#streamlit uploader encodes as a pillow img so we want to save to open in cv2 (converting directly is a pain)
input_image = Image.open( user_image_object )
input_image.save(user_image_name )
# load image with alpha channel
img = cv2.imread( user_image_name , cv2.IMREAD_UNCHANGED)
# extract alpha channel
#alpha = img[:,:,3]
# extract bgr channels
bgr = img[:,:,0:3]
# convert to HSV
hsv = cv2.cvtColor(bgr, cv2.COLOR_BGR2HSV)
#h = hsv[:,:,0]
#s = hsv[:,:,1]
#v = hsv[:,:,2]
h,s,v = cv2.split(hsv)
if color_step == 0:
my_hue_list = [0]
else:
my_hue_list = list( range(0, 180, color_step) ) #Color step basically gives step range of this list, ie if color_step = 2 then it is [0,2,4,6,....,178]
#180 at end means highest it can go is 179 (same as hue param )
#including 0 makes original image part of the outputs/gif
#H,S,V = Hue , Saturation, Value (ie color value) parameters
#Hue has range [0,179] , Saturation [0,255] , Value [0,255]
img_array = []
for i in my_hue_list:
# modify hue channel by adding difference and modulo 180 (modulo because hue parameter only goes up to index 180, shouldn't exceed that )
hnew = np.mod(h + i, 180).astype(np.uint8) #<<<<<<<<<<<<<<<< where the iter comes in
# recombine channels
hsv_new = cv2.merge([hnew,s,v])
# convert back to bgr
bgr_new = cv2.cvtColor(hsv_new, cv2.COLOR_HSV2BGR)
img_array.append(bgr_new )
# put alpha back into bgr_new
#bgra = cv2.cvtColor(bgr_new, cv2.COLOR_BGR2BGRA)
#bgra[:,:,3] = alpha
# save output AS FILE LABELED BY ITERABLE
output_filename = 'output_bgr_new_' + str(i) +'.png' #<<<<<<<<<<<<<<<< where the iter comes in
#cv2.imwrite(output_filename, bgr_new)
height, width, layers = bgr_new.shape
size = (width,height)
'''for this demo prob need to retain image objects bgr_new in an img_array by appending them to that then build them into a gif from the array'''
out = cv2.VideoWriter('outputvideo.mp4',cv2.VideoWriter_fourcc(*'DIVX'), 15, size)
for i in range(len(img_array)):
out.write(img_array[i])
out.release()
st.video(outputvideo.mp4)