Spaces:
Runtime error
Runtime error
import streamlit as st | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
color_step = st.slider('color_step', value=10, min_value=1, max_value=179, step=1) | |
#duration of each frame of the gif in milliseconds | |
duration_parameter = st.slider('duration_parameter aka duration of each frame of the gif in milliseconds', value=10, min_value=1, max_value=2000, step=10) | |
#Loop parameter = number of times gif loops. 0 = loops infinitely. | |
loop_parameter = st.slider('Loop parameter aka number of times gif loops', value=0, min_value=0, max_value=10, step=1) | |
if color_step == 0: | |
my_hue_list = [0] | |
else: | |
my_hue_list = list( range(0, 180, color_step) ) #Color step basically gives step range of this list, ie if color_step = 2 then it is [0,2,4,6,....,178] | |
user_image_object = st.file_uploader("upload your image", type=['png', 'jpg'], accept_multiple_files=False) | |
if user_image_object is not None: | |
st.image(user_image_object ) | |
user_image_name = "input_image.png" | |
#re-encode for streamlit interface | |
#streamlit uploader encodes as a pillow img so we want to save to open in cv2 (converting directly is a pain) | |
input_image = Image.open( user_image_object ) | |
input_image.save(user_image_name ) | |
# load image with alpha channel | |
img = cv2.imread( user_image_name , cv2.IMREAD_UNCHANGED) | |
# extract alpha channel | |
#alpha = img[:,:,3] | |
# extract bgr channels | |
bgr = img[:,:,0:3] | |
# convert to HSV | |
hsv = cv2.cvtColor(bgr, cv2.COLOR_BGR2HSV) | |
#h = hsv[:,:,0] | |
#s = hsv[:,:,1] | |
#v = hsv[:,:,2] | |
h,s,v = cv2.split(hsv) | |
if color_step == 0: | |
my_hue_list = [0] | |
else: | |
my_hue_list = list( range(0, 180, color_step) ) #Color step basically gives step range of this list, ie if color_step = 2 then it is [0,2,4,6,....,178] | |
#180 at end means highest it can go is 179 (same as hue param ) | |
#including 0 makes original image part of the outputs/gif | |
#H,S,V = Hue , Saturation, Value (ie color value) parameters | |
#Hue has range [0,179] , Saturation [0,255] , Value [0,255] | |
img_array = [] | |
for i in my_hue_list: | |
# modify hue channel by adding difference and modulo 180 (modulo because hue parameter only goes up to index 180, shouldn't exceed that ) | |
hnew = np.mod(h + i, 180).astype(np.uint8) #<<<<<<<<<<<<<<<< where the iter comes in | |
# recombine channels | |
hsv_new = cv2.merge([hnew,s,v]) | |
# convert back to bgr | |
bgr_new = cv2.cvtColor(hsv_new, cv2.COLOR_HSV2BGR) | |
img_array.append(bgr_new ) | |
# put alpha back into bgr_new | |
#bgra = cv2.cvtColor(bgr_new, cv2.COLOR_BGR2BGRA) | |
#bgra[:,:,3] = alpha | |
# save output AS FILE LABELED BY ITERABLE | |
output_filename = 'output_bgr_new_' + str(i) +'.png' #<<<<<<<<<<<<<<<< where the iter comes in | |
#cv2.imwrite(output_filename, bgr_new) | |
height, width, layers = bgr_new.shape | |
size = (width,height) | |
'''for this demo prob need to retain image objects bgr_new in an img_array by appending them to that then build them into a gif from the array''' | |
out = cv2.VideoWriter('outputvideo.mp4',cv2.VideoWriter_fourcc(*'DIVX'), 15, size) | |
for i in range(len(img_array)): | |
out.write(img_array[i]) | |
out.release() | |
st.video(outputvideo.mp4) |