|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch_scatter import scatter_mean, scatter_max |
|
from .unet import UNet |
|
from .resnet_block import ResnetBlockFC |
|
import numpy as np |
|
|
|
class ConvPointnet_Decoder(nn.Module): |
|
''' PointNet-based encoder network with ResNet blocks for each point. |
|
Number of input points are fixed. |
|
|
|
Args: |
|
c_dim (int): dimension of latent code c |
|
dim (int): input points dimension |
|
hidden_dim (int): hidden dimension of the network |
|
scatter_type (str): feature aggregation when doing local pooling |
|
unet (bool): weather to use U-Net |
|
unet_kwargs (str): U-Net parameters |
|
plane_resolution (int): defined resolution for plane feature |
|
plane_type (str): feature type, 'xz' - 1-plane, ['xz', 'xy', 'yz'] - 3-plane, ['grid'] - 3D grid volume |
|
padding (float): conventional padding paramter of ONet for unit cube, so [-0.5, 0.5] -> [-0.55, 0.55] |
|
n_blocks (int): number of blocks ResNetBlockFC layers |
|
''' |
|
|
|
def __init__(self, latent_dim=32,query_emb_dim=51,hidden_dim=128, unet_kwargs=None, |
|
plane_resolution=None, plane_type=['xz', 'xy', 'yz'], padding=0.1, n_blocks=5): |
|
super().__init__() |
|
|
|
self.latent_dim=32 |
|
self.actvn = nn.ReLU() |
|
|
|
self.unet = UNet(unet_kwargs['output_dim'], in_channels=latent_dim, **unet_kwargs) |
|
|
|
self.fc_c=nn.ModuleList |
|
self.reso_plane = plane_resolution |
|
self.plane_type = plane_type |
|
self.padding = padding |
|
self.n_blocks=n_blocks |
|
|
|
self.fc_c = nn.ModuleList([ |
|
nn.Linear(latent_dim*3, hidden_dim) for i in range(n_blocks) |
|
]) |
|
self.fc_p=nn.Linear(query_emb_dim,hidden_dim) |
|
self.fc_out=nn.Linear(hidden_dim,1) |
|
|
|
self.blocks = nn.ModuleList([ |
|
ResnetBlockFC(hidden_dim) for i in range(n_blocks) |
|
]) |
|
|
|
def forward(self, plane_features,query,query_emb): |
|
plane_feature=self.unet(plane_features) |
|
H,W=plane_feature.shape[2:4] |
|
xz_feat,xy_feat,yz_feat=torch.split(plane_feature,dim=2,split_size_or_sections=H//3) |
|
xz_sample_feat=self.sample_plane_feature(query,xz_feat,'xz') |
|
xy_sample_feat=self.sample_plane_feature(query,xy_feat,'xy') |
|
yz_sample_feat=self.sample_plane_feature(query,yz_feat,'yz') |
|
|
|
sample_feat=torch.cat([xz_sample_feat,xy_sample_feat,yz_sample_feat],dim=1) |
|
sample_feat=sample_feat.transpose(1,2) |
|
|
|
net=self.fc_p(query_emb) |
|
for i in range(self.n_blocks): |
|
net=net+self.fc_c[i](sample_feat) |
|
net=self.blocks[i](net) |
|
out=self.fc_out(self.actvn(net)).squeeze(-1) |
|
return out |
|
|
|
|
|
def normalize_coordinate(self, p, padding=0.1, plane='xz'): |
|
''' Normalize coordinate to [0, 1] for unit cube experiments |
|
|
|
Args: |
|
p (tensor): point |
|
padding (float): conventional padding paramter of ONet for unit cube, so [-0.5, 0.5] -> [-0.55, 0.55] |
|
plane (str): plane feature type, ['xz', 'xy', 'yz'] |
|
''' |
|
if plane == 'xz': |
|
xy = p[:, :, [0, 2]] |
|
elif plane == 'xy': |
|
xy = p[:, :, [0, 1]] |
|
else: |
|
xy = p[:, :, [1, 2]] |
|
|
|
xy=xy/2 |
|
xy_new = xy / (1 + padding + 10e-6) |
|
xy_new = xy_new + 0.5 |
|
|
|
|
|
|
|
if xy_new.max() >= 1: |
|
xy_new[xy_new >= 1] = 1 - 10e-6 |
|
if xy_new.min() < 0: |
|
xy_new[xy_new < 0] = 0.0 |
|
return xy_new |
|
|
|
def coordinate2index(self, x, reso): |
|
''' Normalize coordinate to [0, 1] for unit cube experiments. |
|
Corresponds to our 3D model |
|
|
|
Args: |
|
x (tensor): coordinate |
|
reso (int): defined resolution |
|
coord_type (str): coordinate type |
|
''' |
|
x = (x * reso).long() |
|
index = x[:, :, 0] + reso * x[:, :, 1] |
|
index = index[:, None, :] |
|
return index |
|
|
|
|
|
def sample_plane_feature(self, query, plane_feature, plane): |
|
xy = self.normalize_coordinate(query.clone(), plane=plane, padding=self.padding) |
|
xy = xy[:, :, None].float() |
|
vgrid = 2.0 * xy - 1.0 |
|
sampled_feat = F.grid_sample(plane_feature, vgrid, padding_mode='border', align_corners=True, |
|
mode='bilinear').squeeze(-1) |
|
return sampled_feat |
|
|
|
|
|
|
|
|