Spaces:
Runtime error
Runtime error
Kyle Dampier
commited on
Commit
•
1bd7363
1
Parent(s):
a11556c
Updated model training and running to CPU
Browse files- Week1.ipynb +33 -21
- mnist.h5 +1 -1
Week1.ipynb
CHANGED
@@ -25,8 +25,12 @@
|
|
25 |
"outputs": [],
|
26 |
"source": [
|
27 |
"import numpy as np\n",
|
|
|
28 |
"from tensorflow import keras\n",
|
29 |
-
"from tensorflow.keras import layers"
|
|
|
|
|
|
|
30 |
]
|
31 |
},
|
32 |
{
|
@@ -73,7 +77,8 @@
|
|
73 |
"\n",
|
74 |
"# convert class vectors to binary class matrices\n",
|
75 |
"y_train = keras.utils.to_categorical(y_train, num_classes)\n",
|
76 |
-
"y_test = keras.utils.to_categorical(y_test, num_classes)"
|
|
|
77 |
]
|
78 |
},
|
79 |
{
|
@@ -166,41 +171,41 @@
|
|
166 |
"output_type": "stream",
|
167 |
"text": [
|
168 |
"Epoch 1/15\n",
|
169 |
-
"422/422 [==============================] -
|
170 |
"Epoch 2/15\n",
|
171 |
-
"422/422 [==============================] -
|
172 |
"Epoch 3/15\n",
|
173 |
-
"422/422 [==============================] -
|
174 |
"Epoch 4/15\n",
|
175 |
-
"422/422 [==============================] -
|
176 |
"Epoch 5/15\n",
|
177 |
-
"422/422 [==============================] -
|
178 |
"Epoch 6/15\n",
|
179 |
-
"422/422 [==============================] -
|
180 |
"Epoch 7/15\n",
|
181 |
-
"422/422 [==============================] -
|
182 |
"Epoch 8/15\n",
|
183 |
-
"422/422 [==============================] -
|
184 |
"Epoch 9/15\n",
|
185 |
-
"422/422 [==============================] -
|
186 |
"Epoch 10/15\n",
|
187 |
-
"422/422 [==============================] -
|
188 |
"Epoch 11/15\n",
|
189 |
-
"422/422 [==============================] -
|
190 |
"Epoch 12/15\n",
|
191 |
-
"422/422 [==============================] -
|
192 |
"Epoch 13/15\n",
|
193 |
-
"422/422 [==============================] -
|
194 |
"Epoch 14/15\n",
|
195 |
-
"422/422 [==============================] -
|
196 |
"Epoch 15/15\n",
|
197 |
-
"422/422 [==============================] -
|
198 |
]
|
199 |
},
|
200 |
{
|
201 |
"data": {
|
202 |
"text/plain": [
|
203 |
-
"<keras.callbacks.History at
|
204 |
]
|
205 |
},
|
206 |
"execution_count": 5,
|
@@ -230,8 +235,8 @@
|
|
230 |
"name": "stdout",
|
231 |
"output_type": "stream",
|
232 |
"text": [
|
233 |
-
"Test loss: 0.
|
234 |
-
"Test accuracy: 0.
|
235 |
]
|
236 |
}
|
237 |
],
|
@@ -250,12 +255,19 @@
|
|
250 |
},
|
251 |
{
|
252 |
"cell_type": "code",
|
253 |
-
"execution_count":
|
254 |
"metadata": {},
|
255 |
"outputs": [],
|
256 |
"source": [
|
257 |
"model.save(\"mnist.h5\")"
|
258 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
}
|
260 |
],
|
261 |
"metadata": {
|
|
|
25 |
"outputs": [],
|
26 |
"source": [
|
27 |
"import numpy as np\n",
|
28 |
+
"import tensorflow as tf\n",
|
29 |
"from tensorflow import keras\n",
|
30 |
+
"from tensorflow.keras import layers\n",
|
31 |
+
"\n",
|
32 |
+
"# Hide GPU from visible devices\n",
|
33 |
+
"tf.config.set_visible_devices([], 'GPU')"
|
34 |
]
|
35 |
},
|
36 |
{
|
|
|
77 |
"\n",
|
78 |
"# convert class vectors to binary class matrices\n",
|
79 |
"y_train = keras.utils.to_categorical(y_train, num_classes)\n",
|
80 |
+
"y_test = keras.utils.to_categorical(y_test, num_classes)\n",
|
81 |
+
"# [1, 2, 3, 4] -> [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]\n"
|
82 |
]
|
83 |
},
|
84 |
{
|
|
|
171 |
"output_type": "stream",
|
172 |
"text": [
|
173 |
"Epoch 1/15\n",
|
174 |
+
"422/422 [==============================] - 9s 20ms/step - loss: 0.3573 - accuracy: 0.8919 - val_loss: 0.0857 - val_accuracy: 0.9777\n",
|
175 |
"Epoch 2/15\n",
|
176 |
+
"422/422 [==============================] - 8s 19ms/step - loss: 0.1184 - accuracy: 0.9636 - val_loss: 0.0608 - val_accuracy: 0.9825\n",
|
177 |
"Epoch 3/15\n",
|
178 |
+
"422/422 [==============================] - 8s 19ms/step - loss: 0.0862 - accuracy: 0.9733 - val_loss: 0.0496 - val_accuracy: 0.9868\n",
|
179 |
"Epoch 4/15\n",
|
180 |
+
"422/422 [==============================] - 8s 20ms/step - loss: 0.0724 - accuracy: 0.9778 - val_loss: 0.0424 - val_accuracy: 0.9883\n",
|
181 |
"Epoch 5/15\n",
|
182 |
+
"422/422 [==============================] - 8s 19ms/step - loss: 0.0656 - accuracy: 0.9793 - val_loss: 0.0398 - val_accuracy: 0.9895\n",
|
183 |
"Epoch 6/15\n",
|
184 |
+
"422/422 [==============================] - 8s 20ms/step - loss: 0.0591 - accuracy: 0.9816 - val_loss: 0.0361 - val_accuracy: 0.9912\n",
|
185 |
"Epoch 7/15\n",
|
186 |
+
"422/422 [==============================] - 8s 20ms/step - loss: 0.0522 - accuracy: 0.9833 - val_loss: 0.0315 - val_accuracy: 0.9922\n",
|
187 |
"Epoch 8/15\n",
|
188 |
+
"422/422 [==============================] - 8s 20ms/step - loss: 0.0485 - accuracy: 0.9846 - val_loss: 0.0319 - val_accuracy: 0.9910\n",
|
189 |
"Epoch 9/15\n",
|
190 |
+
"422/422 [==============================] - 9s 20ms/step - loss: 0.0447 - accuracy: 0.9858 - val_loss: 0.0331 - val_accuracy: 0.9917\n",
|
191 |
"Epoch 10/15\n",
|
192 |
+
"422/422 [==============================] - 9s 21ms/step - loss: 0.0416 - accuracy: 0.9871 - val_loss: 0.0309 - val_accuracy: 0.9922\n",
|
193 |
"Epoch 11/15\n",
|
194 |
+
"422/422 [==============================] - 8s 20ms/step - loss: 0.0397 - accuracy: 0.9877 - val_loss: 0.0281 - val_accuracy: 0.9932\n",
|
195 |
"Epoch 12/15\n",
|
196 |
+
"422/422 [==============================] - 9s 20ms/step - loss: 0.0393 - accuracy: 0.9874 - val_loss: 0.0308 - val_accuracy: 0.9908\n",
|
197 |
"Epoch 13/15\n",
|
198 |
+
"422/422 [==============================] - 8s 20ms/step - loss: 0.0373 - accuracy: 0.9882 - val_loss: 0.0276 - val_accuracy: 0.9928\n",
|
199 |
"Epoch 14/15\n",
|
200 |
+
"422/422 [==============================] - 8s 19ms/step - loss: 0.0357 - accuracy: 0.9879 - val_loss: 0.0265 - val_accuracy: 0.9935\n",
|
201 |
"Epoch 15/15\n",
|
202 |
+
"422/422 [==============================] - 8s 19ms/step - loss: 0.0334 - accuracy: 0.9886 - val_loss: 0.0298 - val_accuracy: 0.9927\n"
|
203 |
]
|
204 |
},
|
205 |
{
|
206 |
"data": {
|
207 |
"text/plain": [
|
208 |
+
"<keras.callbacks.History at 0x2242fa4c220>"
|
209 |
]
|
210 |
},
|
211 |
"execution_count": 5,
|
|
|
235 |
"name": "stdout",
|
236 |
"output_type": "stream",
|
237 |
"text": [
|
238 |
+
"Test loss: 0.02596166729927063\n",
|
239 |
+
"Test accuracy: 0.9919000267982483\n"
|
240 |
]
|
241 |
}
|
242 |
],
|
|
|
255 |
},
|
256 |
{
|
257 |
"cell_type": "code",
|
258 |
+
"execution_count": 13,
|
259 |
"metadata": {},
|
260 |
"outputs": [],
|
261 |
"source": [
|
262 |
"model.save(\"mnist.h5\")"
|
263 |
]
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"cell_type": "code",
|
267 |
+
"execution_count": null,
|
268 |
+
"metadata": {},
|
269 |
+
"outputs": [],
|
270 |
+
"source": []
|
271 |
}
|
272 |
],
|
273 |
"metadata": {
|
mnist.h5
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 455304
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f86dd360a2a044d621faffa7d748a1a8154395656af6b76b7b687272c04cac35
|
3 |
size 455304
|