|
|
|
|
|
|
|
|
|
|
|
from chain_img_processor import ChainImgProcessor, ChainImgPlugin |
|
import os |
|
from PIL import Image |
|
from numpy import asarray |
|
|
|
modname = os.path.basename(__file__)[:-3] |
|
|
|
|
|
def start(core:ChainImgProcessor): |
|
manifest = { |
|
"name": "Codeformer", |
|
"version": "3.0", |
|
|
|
"default_options": { |
|
"background_enhance": True, |
|
"face_upsample": True, |
|
"upscale": 2, |
|
"codeformer_fidelity": 0.8, |
|
"skip_if_no_face":False, |
|
|
|
}, |
|
|
|
"img_processor": { |
|
"codeformer": PluginCodeformer |
|
} |
|
} |
|
return manifest |
|
|
|
def start_with_options(core:ChainImgProcessor, manifest:dict): |
|
pass |
|
|
|
class PluginCodeformer(ChainImgPlugin): |
|
def init_plugin(self): |
|
import plugins.codeformer_app_cv2 |
|
pass |
|
|
|
def process(self, img, params:dict): |
|
import copy |
|
|
|
|
|
from plugins.codeformer_app_cv2 import inference_app |
|
options = self.core.plugin_options(modname) |
|
|
|
if "face_detected" in params: |
|
if not params["face_detected"]: |
|
return img |
|
|
|
|
|
temp_frame = copy.copy(img) |
|
if "processed_faces" in params: |
|
for face in params["processed_faces"]: |
|
start_x, start_y, end_x, end_y = map(int, face['bbox']) |
|
padding_x = int((end_x - start_x) * 0.5) |
|
padding_y = int((end_y - start_y) * 0.5) |
|
start_x = max(0, start_x - padding_x) |
|
start_y = max(0, start_y - padding_y) |
|
end_x = max(0, end_x + padding_x) |
|
end_y = max(0, end_y + padding_y) |
|
temp_face = temp_frame[start_y:end_y, start_x:end_x] |
|
if temp_face.size: |
|
temp_face = inference_app(temp_face, options.get("background_enhance"), options.get("face_upsample"), |
|
options.get("upscale"), options.get("codeformer_fidelity"), |
|
options.get("skip_if_no_face")) |
|
temp_frame[start_y:end_y, start_x:end_x] = temp_face |
|
else: |
|
temp_frame = inference_app(temp_frame, options.get("background_enhance"), options.get("face_upsample"), |
|
options.get("upscale"), options.get("codeformer_fidelity"), |
|
options.get("skip_if_no_face")) |
|
|
|
|
|
|
|
if not "blend_ratio" in params: |
|
return temp_frame |
|
|
|
|
|
temp_frame = Image.blend(Image.fromarray(img), Image.fromarray(temp_frame), params["blend_ratio"]) |
|
return asarray(temp_frame) |
|
|
|
|