Spaces:
Runtime error
Runtime error
Delete app.py
Browse files
app.py
DELETED
@@ -1,126 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from typing import List
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
from PIL import Image
|
6 |
-
import tensorflow as tf
|
7 |
-
from tensorflow.keras.models import load_model
|
8 |
-
from tensorflow.keras.preprocessing import image
|
9 |
-
from flask import Flask, request
|
10 |
-
import gradio as gr
|
11 |
-
from backend.models.skin_tone.skin_tone_knn import identify_skin_tone
|
12 |
-
from backend.models.recommender.rec import recs_essentials, makeup_recommendation
|
13 |
-
import base64
|
14 |
-
from io import BytesIO
|
15 |
-
|
16 |
-
# Initialize Flask app
|
17 |
-
app = Flask(__name__)
|
18 |
-
|
19 |
-
# Model variables and loading
|
20 |
-
class_names1 = ['Dry_skin', 'Normal_skin', 'Oil_skin']
|
21 |
-
class_names2 = ['Low', 'Moderate', 'Severe']
|
22 |
-
skin_tone_dataset = 'models/skin_tone/skin_tone_dataset.csv'
|
23 |
-
|
24 |
-
|
25 |
-
def get_model():
|
26 |
-
global model1, model2
|
27 |
-
model1 = load_model('./models/skin_model')
|
28 |
-
print('Model 1 loaded')
|
29 |
-
model2 = load_model('./models/acne_model')
|
30 |
-
print("Model 2 loaded!")
|
31 |
-
|
32 |
-
get_model()
|
33 |
-
|
34 |
-
# Load and preprocess the image
|
35 |
-
def load_image(img_path):
|
36 |
-
img = image.load_img(img_path, target_size=(224, 224))
|
37 |
-
img_tensor = image.img_to_array(img)
|
38 |
-
img_tensor = np.expand_dims(img_tensor, axis=0) # Add a batch dimension
|
39 |
-
img_tensor /= 255. # Normalize image
|
40 |
-
return img_tensor
|
41 |
-
|
42 |
-
# Prediction for skin type
|
43 |
-
def prediction_skin(img_path):
|
44 |
-
new_image = load_image(img_path)
|
45 |
-
pred1 = model1.predict(new_image)
|
46 |
-
if len(pred1[0]) > 1:
|
47 |
-
pred_class1 = class_names1[tf.argmax(pred1[0])]
|
48 |
-
else:
|
49 |
-
pred_class1 = class_names1[int(tf.round(pred1[0]))]
|
50 |
-
return pred_class1
|
51 |
-
|
52 |
-
# Prediction for acne severity
|
53 |
-
def prediction_acne(img_path):
|
54 |
-
new_image = load_image(img_path)
|
55 |
-
pred2 = model2.predict(new_image)
|
56 |
-
if len(pred2[0]) > 1:
|
57 |
-
pred_class2 = class_names2[tf.argmax(pred2[0])]
|
58 |
-
else:
|
59 |
-
pred_class2 = class_names2[int(tf.round(pred2[0]))]
|
60 |
-
return pred_class2
|
61 |
-
|
62 |
-
# Gradio function for handling image input
|
63 |
-
def process_image(image_data):
|
64 |
-
image_data = bytes(image_data, encoding="ascii")
|
65 |
-
im = Image.open(BytesIO(base64.b64decode(image_data + '==')))
|
66 |
-
file_path = './static/image.png'
|
67 |
-
im.save(file_path) # Save the image locally
|
68 |
-
skin_type = prediction_skin(file_path).split('_')[0] # Get skin type prediction
|
69 |
-
acne_type = prediction_acne(file_path) # Get acne severity prediction
|
70 |
-
tone = identify_skin_tone(file_path, dataset=skin_tone_dataset) # Get skin tone prediction
|
71 |
-
return {'type': skin_type, 'tone': str(tone), 'acne': acne_type}
|
72 |
-
|
73 |
-
# Gradio Interface
|
74 |
-
iface = gr.Interface(fn=process_image,
|
75 |
-
inputs=gr.Image(type="base64", label="Upload Face Image"),
|
76 |
-
outputs="json",
|
77 |
-
live=True)
|
78 |
-
|
79 |
-
# Flask routes for API endpoints
|
80 |
-
@app.route('/')
|
81 |
-
def home():
|
82 |
-
return "API is running. Use the Gradio interface for testing."
|
83 |
-
|
84 |
-
# Recommendation API endpoint
|
85 |
-
@app.route('/recommend', methods=['PUT'])
|
86 |
-
def recommend():
|
87 |
-
args = request.get_json() # Getting JSON data from the frontend
|
88 |
-
features = args['features']
|
89 |
-
tone = args['tone']
|
90 |
-
skin_type = args['type'].lower()
|
91 |
-
skin_tone = 'light to medium'
|
92 |
-
if tone <= 2:
|
93 |
-
skin_tone = 'fair to light'
|
94 |
-
elif tone >= 4:
|
95 |
-
skin_tone = 'medium to dark'
|
96 |
-
|
97 |
-
fv = [int(value) for key, value in features.items()] # Converting feature values to integers
|
98 |
-
|
99 |
-
general = recs_essentials(fv, None) # Recommendation essentials
|
100 |
-
makeup = makeup_recommendation(skin_tone, skin_type) # Makeup recommendations
|
101 |
-
|
102 |
-
return {'general': general, 'makeup': makeup}
|
103 |
-
|
104 |
-
# Skin Metrics API endpoint
|
105 |
-
@app.route('/upload', methods=['PUT'])
|
106 |
-
def upload():
|
107 |
-
args = request.get_json() # Get the uploaded image data
|
108 |
-
file_data = args['file']
|
109 |
-
starter = file_data.find(',')
|
110 |
-
image_data = file_data[starter+1:] # Extract the base64-encoded image
|
111 |
-
|
112 |
-
image_data = bytes(image_data, encoding="ascii")
|
113 |
-
im = Image.open(BytesIO(base64.b64decode(image_data + '==')))
|
114 |
-
file_path = './static/image.png'
|
115 |
-
im.save(file_path) # Save image locally
|
116 |
-
|
117 |
-
skin_type = prediction_skin(file_path).split('_')[0]
|
118 |
-
acne_type = prediction_acne(file_path)
|
119 |
-
tone = identify_skin_tone(file_path, dataset=skin_tone_dataset)
|
120 |
-
|
121 |
-
return {'type': skin_type, 'tone': str(tone), 'acne': acne_type}, 200 # Return predictions
|
122 |
-
|
123 |
-
if __name__ == "__main__":
|
124 |
-
# Launch Gradio interface and Flask app simultaneously
|
125 |
-
iface.launch(server_name="0.0.0.0", server_port=8080) # Launch Gradio UI
|
126 |
-
app.run(debug=False, use_reloader=False) # Run Flask app
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|