Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from asr import transcribe_auto
|
3 |
+
from huggingface_hub import InferenceClient
|
4 |
+
from ttsmms import download, TTS
|
5 |
+
from langdetect import detect
|
6 |
+
|
7 |
+
# Initialize text generation client
|
8 |
+
client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf")
|
9 |
+
|
10 |
+
# Download and load TTS models for Swahili and English
|
11 |
+
swahili_dir = download("swh", "./data/swahili")
|
12 |
+
english_dir = download("eng", "./data/english") # Ensure an English TTS model is available
|
13 |
+
|
14 |
+
swahili_tts = TTS(swahili_dir)
|
15 |
+
english_tts = TTS(english_dir)
|
16 |
+
|
17 |
+
def is_uncertain(question, response):
|
18 |
+
"""Check if the model's response is unreliable."""
|
19 |
+
if len(response.split()) < 4 or response.lower() in question.lower():
|
20 |
+
return True
|
21 |
+
uncertain_phrases = ["Kulingana na utafiti", "Inaaminika kuwa", "Ninadhani", "It is believed that", "Some people say"]
|
22 |
+
return any(phrase.lower() in response.lower() for phrase in uncertain_phrases)
|
23 |
+
|
24 |
+
def generate_text(prompt):
|
25 |
+
"""Generate a response from the text generation model."""
|
26 |
+
messages = [{"role": "user", "content": prompt}]
|
27 |
+
|
28 |
+
response = ""
|
29 |
+
for message in client.chat_completion(messages, max_tokens=512, stream=True, temperature=0.7, top_p=0.95):
|
30 |
+
token = message.choices[0].delta.content
|
31 |
+
response += token
|
32 |
+
|
33 |
+
if is_uncertain(prompt, response):
|
34 |
+
return "AI is uncertain about the response."
|
35 |
+
|
36 |
+
return response
|
37 |
+
|
38 |
+
# Function to detect language and generate speech
|
39 |
+
def text_to_speech(text):
|
40 |
+
lang = detect(text) # Detect language
|
41 |
+
wav_path = "./output.wav"
|
42 |
+
|
43 |
+
if lang == "sw": # Swahili
|
44 |
+
swahili_tts.synthesis(text, wav_path=wav_path)
|
45 |
+
else: # Default to English if not Swahili
|
46 |
+
english_tts.synthesis(text, wav_path=wav_path)
|
47 |
+
|
48 |
+
return wav_path
|
49 |
+
|
50 |
+
def process_audio(audio):
|
51 |
+
# Step 1: Transcribe the audio
|
52 |
+
transcription = transcribe_auto(audio)
|
53 |
+
|
54 |
+
# Step 2: Generate text based on the transcription
|
55 |
+
generated_text = generate_text(transcription)
|
56 |
+
|
57 |
+
# Step 3: Convert the generated text to speech
|
58 |
+
speech = text_to_speech(generated_text)
|
59 |
+
|
60 |
+
return transcription, generated_text, speech
|
61 |
+
|
62 |
+
# Gradio Interface
|
63 |
+
with gr.Blocks() as demo:
|
64 |
+
gr.Markdown("<p align='center' style='font-size: 20px;'>End-to-End ASR, Text Generation, and TTS</p>")
|
65 |
+
gr.HTML("<center>Upload or record audio. The model will transcribe, generate a response, and read it out.</center>")
|
66 |
+
|
67 |
+
audio_input = gr.Audio(label="Input Audio", source="upload", type="file")
|
68 |
+
text_output = gr.Textbox(label="Transcription")
|
69 |
+
generated_text_output = gr.Textbox(label="Generated Text")
|
70 |
+
audio_output = gr.Audio(label="Output Speech")
|
71 |
+
|
72 |
+
submit_btn = gr.Button("Submit")
|
73 |
+
|
74 |
+
submit_btn.click(
|
75 |
+
fn=process_audio,
|
76 |
+
inputs=audio_input,
|
77 |
+
outputs=[text_output, generated_text_output, audio_output]
|
78 |
+
)
|
79 |
+
|
80 |
+
if __name__ == "__main__":
|
81 |
+
demo.launch()
|