Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| from textblob import TextBlob | |
| import json | |
| import os | |
| import time | |
| import logging | |
| # Set up logging | |
| logging.basicConfig(level=logging.INFO) | |
| # Get the API token from the environment variable | |
| api_token = os.getenv('HUGGINGFACEHUB_API_TOKEN') | |
| client = InferenceClient( | |
| model="Futuresony/future_ai_12_10_2024.gguf", | |
| token=api_token | |
| ) | |
| # Directory to store interactions and feedback | |
| DATA_DIR = "data" | |
| INTERACTIONS_FILE = os.path.join(DATA_DIR, "interactions.json") | |
| # Ensure the data directory exists | |
| os.makedirs(DATA_DIR, exist_ok=True) | |
| def format_alpaca_prompt(user_input, system_prompt, history): | |
| """Formats input in Alpaca/LLaMA style""" | |
| history_str = "\n".join([f"### Instruction:\n{h[0]}\n### Response:\n{h[1]}" for h in history]) | |
| prompt = f"""{system_prompt} | |
| {history_str} | |
| ### Instruction: | |
| {user_input} | |
| ### Response: | |
| """ | |
| return prompt | |
| def analyze_sentiment(message): | |
| """Analyze the sentiment of the user's message""" | |
| blob = TextBlob(message) | |
| sentiment = blob.sentiment.polarity | |
| return sentiment | |
| def save_interaction(user_input, chatbot_response, feedback=None): | |
| """Save the interaction and feedback to a file""" | |
| interaction = { | |
| "user_input": user_input, | |
| "chatbot_response": chatbot_response, | |
| "feedback": feedback, | |
| "timestamp": "2025-02-25 14:08:31" | |
| } | |
| if os.path.exists(INTERACTIONS_FILE): | |
| with open(INTERACTIONS_FILE, "r") as file: | |
| interactions = json.load(file) | |
| else: | |
| interactions = [] | |
| interactions.append(interaction) | |
| with open(INTERACTIONS_FILE, "w") as file: | |
| json.dump(interactions, file, indent=4) | |
| def respond(message, history, system_message, max_tokens, temperature, top_p, feedback=None): | |
| sentiment = analyze_sentiment(message) | |
| # Adjust system message based on sentiment | |
| if sentiment < -0.2: | |
| system_message = "You are a sympathetic Chatbot." | |
| elif sentiment > 0.2: | |
| system_message = "You are an enthusiastic Chatbot." | |
| else: | |
| system_message = "You are a friendly Chatbot." | |
| formatted_prompt = format_alpaca_prompt(message, system_message, history) | |
| # Retry mechanism | |
| max_retries = 3 | |
| for attempt in range(max_retries): | |
| try: | |
| response = client.text_generation( | |
| formatted_prompt, | |
| max_new_tokens=max_tokens, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ) | |
| break # Exit the loop if the request is successful | |
| except Exception as e: | |
| logging.error(f"Attempt {attempt + 1} failed: {e}") | |
| if attempt < max_retries - 1: | |
| time.sleep(2 ** attempt) # Exponential backoff | |
| else: | |
| raise e | |
| # β Extract only the response | |
| cleaned_response = response.split("### Response:")[-1].strip() | |
| history.append((message, cleaned_response)) # β Update history with the new message and response | |
| save_interaction(message, cleaned_response, feedback) # β Save the interaction and feedback | |
| yield cleaned_response # β Output only the answer | |
| def collect_feedback(response, feedback): | |
| """Collect user feedback on the chatbot's response""" | |
| save_interaction(response, feedback=feedback) | |
| def view_interactions(): | |
| if os.path.exists(INTERACTIONS_FILE): | |
| with open(INTERACTIONS_FILE, "r") as file: | |
| interactions = json.load(file) | |
| return json.dumps(interactions, indent=4) | |
| else: | |
| return "No interactions found." | |
| def download_interactions(): | |
| """Provide the interactions file for download""" | |
| if os.path.exists(INTERACTIONS_FILE): | |
| return INTERACTIONS_FILE | |
| else: | |
| return None | |
| # Create a Gradio interface to display interactions | |
| view_interface = gr.Interface( | |
| fn=view_interactions, | |
| inputs=[], | |
| outputs="text", | |
| title="View Interactions" | |
| ) | |
| # Create a Gradio interface for downloading interactions | |
| download_interface = gr.Interface( | |
| fn=download_interactions, | |
| inputs=[], | |
| outputs=gr.File(label="Download Interactions"), | |
| title="Download Interactions" | |
| ) | |
| feedback_interface = gr.Interface( | |
| fn=collect_feedback, | |
| inputs=[ | |
| gr.Textbox(label="Response"), | |
| gr.Radio(choices=["Good", "Bad"], label="Feedback"), | |
| ], | |
| outputs="text", | |
| title="Feedback Interface" | |
| ) | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
| gr.Slider(minimum=1, maximum=250, value=128, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.9, step=0.1, label="Temperature"), | |
| gr.Slider(minimum=0.1, maximum=1.0, value=0.99, step=0.01, label="Top-p (nucleus sampling)"), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |
| feedback_interface.launch() | |
| view_interface.launch() | |
| download_interface.launch() |