Future-Tense's picture
Update app.py
c57adfe
raw
history blame
4.26 kB
import cv2 # opencv2 package for python.
import torch
from pytube import YouTube
from ultralyticsplus import YOLO, render_result
#from torch import hub # Hub contains other models like FasterRCNN
URL = "https://www.youtube.com/watch?v=dQw4w9WgXcQ" #URL to parse
#play = pafy.new(_URL).streams[-1] #'-1' means read the lowest quality of video.
#assert play is not None # we want to make sure their is a input to read.
#stream = cv2.VideoCapture(play.url) #create a opencv video stream.
#stream = cv2.VideoCapture(0) # 0 means read from local camera.
#camera_ip = "rtsp://username:password@IP/port"
#stream = cv2.VideoCapture(camera_ip)
def load():
yt = YouTube(URL)
vid_cap = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download(filename="tmp.mp4")
stream = cv2.VideoCapture(vid)
return vid_cap
# load model
model = YOLO('ultralyticsplus/yolov8s')
# set model parameters
model.overrides['conf'] = 0.25 # NMS confidence threshold
model.overrides['iou'] = 0.45 # NMS IoU threshold
model.overrides['agnostic_nms'] = False # NMS class-agnostic
model.overrides['max_det'] = 1000 # maximum number of detections per image
# set image
image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
# perform inference
results = model.predict(image)
# observe results
print(results[0].boxes)
render = render_result(model=model, image=image, result=results[0])
render.show()
'''
"""
The function below identifies the device which is availabe to make the prediction and uses it to load and infer the frame. Once it has results it will extract the labels and cordinates(Along with scores) for each object detected in the frame.
"""
def score_frame(frame, model):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model.to(device)
frame = [torch.tensor(frame)]
results = self.model(frame)
labels = results.xyxyn[0][:, -1].numpy()
cord = results.xyxyn[0][:, :-1].numpy()
return labels, cord
"""
The function below takes the results and the frame as input and plots boxes over all the objects which have a score higer than our threshold.
"""
def plot_boxes(self, results, frame):
labels, cord = results
n = len(labels)
x_shape, y_shape = frame.shape[1], frame.shape[0]
for i in range(n):
row = cord[i]
# If score is less than 0.2 we avoid making a prediction.
if row[4] < 0.2:
continue
x1 = int(row[0]*x_shape)
y1 = int(row[1]*y_shape)
x2 = int(row[2]*x_shape)
y2 = int(row[3]*y_shape)
bgr = (0, 255, 0) # color of the box
classes = self.model.names # Get the name of label index
label_font = cv2.FONT_HERSHEY_SIMPLEX #Font for the label.
cv2.rectangle(frame, \
(x1, y1), (x2, y2), \
bgr, 2) #Plot the boxes
cv2.putText(frame,\
classes[labels[i]], \
(x1, y1), \
label_font, 0.9, bgr, 2) #Put a label over box.
return frame
"""
The Function below oracestrates the entire operation and performs the real-time parsing for video stream.
"""
def __call__(self):
player = self.get_video_stream() #Get your video stream.
assert player.isOpened() # Make sure that their is a stream.
#Below code creates a new video writer object to write our
#output stream.
x_shape = int(player.get(cv2.CAP_PROP_FRAME_WIDTH))
y_shape = int(player.get(cv2.CAP_PROP_FRAME_HEIGHT))
four_cc = cv2.VideoWriter_fourcc(*"MJPG") #Using MJPEG codex
out = cv2.VideoWriter(out_file, four_cc, 20, \
(x_shape, y_shape))
ret, frame = player.read() # Read the first frame.
while rect: # Run until stream is out of frames
start_time = time() # We would like to measure the FPS.
results = self.score_frame(frame) # Score the Frame
frame = self.plot_boxes(results, frame) # Plot the boxes.
end_time = time()
fps = 1/np.round(end_time - start_time, 3) #Measure the FPS.
print(f"Frames Per Second : {fps}")
out.write(frame) # Write the frame onto the output.
ret, frame = player.read() # Read next frame.
'''