Wanfq commited on
Commit
9e6d70c
β€’
1 Parent(s): d0f751c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -32
README.md CHANGED
@@ -16,7 +16,7 @@ pinned: false
16
 
17
 
18
  <h4> |<a href="https://arxiv.org/abs/2401.10491"> πŸ“‘ FuseLLM Paper @ICLR2024 </a> |
19
- <a href="https://arxiv.org/abs/2402.16107"> πŸ“‘ FuseChat Tech Report </a> |
20
  <a href="https://huggingface.co/FuseAI"> πŸ€— HuggingFace Repo </a> |
21
  <a href="https://github.com/fanqiwan/FuseLLM"> 🐱 GitHub Repo </a> |
22
  </h4>
@@ -39,6 +39,8 @@ Welcome to join us!
39
 
40
  ### FuseChat [SOTA 7B LLM on MT-Bench]
41
 
 
 
42
  - **Mar 13, 2024:** πŸ”₯πŸ”₯πŸ”₯ We release a HuggingFace Space for [FuseChat-7B](https://huggingface.co/spaces/FuseAI/FuseChat-7B), try it now!
43
 
44
  - **Feb 26, 2024:** πŸ”₯πŸ”₯ We release [FuseChat-7B-VaRM](https://huggingface.co/FuseAI/FuseChat-7B-VaRM), which is the fusion of three prominent chat LLMs with diverse architectures and scales, namely [NH2-Mixtral-8x7B](https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO), [NH2-Solar-10.7B](https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B), and [OpenChat-3.5-7B](https://huggingface.co/openchat/openchat_3.5). FuseChat-7B-VaRM achieves an average performance of **8.22** on MT-Bench, outperforming various powerful chat LLMs like [Starling-7B](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha), [Yi-34B-Chat](https://huggingface.co/01-ai/Yi-34B-Chat), and [Tulu-2-DPO-70B](https://huggingface.co/allenai/tulu-2-dpo-70b), even surpassing [GPT-3.5 (March)](https://platform.openai.com/docs/models/gpt-3-5-turbo), [Claude-2.1](https://www.anthropic.com/news/claude-2-1), and approaching [Mixtral-8x7B-Instruct](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1).
@@ -46,43 +48,25 @@ Welcome to join us!
46
  - **Feb 25, 2024:** πŸ”₯ We release [FuseChat-Mixture](https://huggingface.co/datasets/FuseAI/FuseChat-Mixture), which is a comprehensive training dataset covers different styles and capabilities, featuring both human-written and model-generated, and spanning general instruction-following and specific skills.
47
 
48
  <p align="center">
49
- <img src="fig_0.png" width="50%"> <br>
 
 
 
 
50
  </p>
51
 
52
- | Proprietary Models | #Params | MT-Bench | Open Source Models | #Params | MT-Bench |
53
- |-----------------------------------------------------------------------|---------|----------|-----------------------------------------------------------------------|---------|----------|
54
- | GPT-4-1106-preview | - | 9.32 | Qwen1.5-72B-Chat | 72B | 8.61 |
55
- | GPT-4-0613 | - | 9.18 | Nous-Hermes-2-Mixtral-8x7B-DPO | 8x7B | 8.33 |
56
- | GPT-4-0314 | - | 8.96 | Mixtral-8x7B-Instruct-v0.1 | 8x7B | 8.30 |
57
- | Mistral Medium | - | 8.61 | πŸ€— [FuseChat-7B-VaRM](https://huggingface.co/FuseAI/FuseChat-7B-VaRM) | 7B | 8.22 |
58
- | GPT-3.5-Turbo-0613 | - | 8.39 | Starling-LM-7B-alpha | 7B | 8.09 |
59
- | GPT-3.5-Turbo-1106 | - | 8.32 | Tulu-2-DPO-70B | 70B | 7.89 |
60
- | πŸ€— [FuseChat-7B-VaRM](https://huggingface.co/FuseAI/FuseChat-7B-VaRM) | 7B | 8.22 | OpenChat-3.5 | 7B | 7.81 |
61
- | Claude-2.1 | - | 8.18 | OpenChat-3.5-0106 | 7B | 7.80 |
62
- | Claude-2.0 | - | 8.06 | WizardLM-70B-v1.0 | 70B | 7.71 |
63
- | GPT-3.5-Turbo-0314 | - | 7.94 | Yi-34B-Chat | 34B | 7.67 |
64
- | Claude-1 | - | 7.90 | Nous-Hermes-2-SOLAR-10.7B | 10.7B | 7.66 |
65
 
66
  ### FuseLLM [Surpassing Llama-2-7B]
67
 
68
  - **Jan 22, 2024:** πŸ”₯ We release [FuseLLM-7B](https://huggingface.co/Wanfq/FuseLLM-7B), which is the fusion of three open-source foundation LLMs with distinct architectures, including [Llama-2-7B](https://huggingface.co/meta-llama/Llama-2-7b-hf), [OpenLLaMA-7B](https://huggingface.co/openlm-research/open_llama_7b_v2), and [MPT-7B](https://huggingface.co/mosaicml/mpt-7b).
69
 
70
- | Model | BBH | ARC-easy | ARC-challenge | BoolQ | HellaSwag | OpenBookQA |
71
- |----------------------------------------------------------|-------|----------|---------------|-------|-----------|------------|
72
- | OpenLLaMA-7B | 33.87 | 69.70 | 41.38 | 72.29 | 74.53 | 41.00 |
73
- | MPT-7B | 33.38 | 70.12 | 42.15 | 74.74 | 76.25 | 42.40 |
74
- | Llama-2-7B | 39.70 | 74.58 | 46.33 | 77.71 | 76.00 | 44.20 |
75
- | Llama-2-CLM-7B | 40.44 | 74.54 | 46.50 | 76.88 | 76.57 | 44.80 |
76
- | πŸ€— [FuseLLM-7B](https://huggingface.co/Wanfq/FuseLLM-7B) | 41.75 | 75.04 | 47.44 | 78.13 | 76.78 | 45.40 |
77
-
78
 
79
- | Model | MultiPL-E | TrivialQA | DROP | LAMBADA | IWSLT2017 | SciBench |
80
- |----------------------------------------------------------|-----------|-----------|-------|---------|-----------|----------|
81
- | OpenLLaMA-7B | 18.11 | 39.96 | 22.31 | 70.31 | 5.51 | 0.68 |
82
- | MPT-7B | 17.26 | 28.89 | 23.54 | 70.08 | 5.49 | 0.88 |
83
- | Llama-2-7B | 14.63 | 52.46 | 27.25 | 73.28 | 6.48 | 0.14 |
84
- | Llama-2-CLM-7B | 14.83 | 53.14 | 28.51 | 73.45 | 6.91 | 0.94 |
85
- | πŸ€— [FuseLLM-7B](https://huggingface.co/Wanfq/FuseLLM-7B) | 15.56 | 54.49 | 28.97 | 73.72 | 6.75 | 1.65 |
86
 
87
 
88
  ## Citation
@@ -102,8 +86,8 @@ Please cite the following paper if you reference our model, code, data, or paper
102
  ```
103
  @article{wan2024fusechat,
104
  title={FuseChat: Knowledge Fusion of Chat Models},
105
- author={Fanqi Wan and Ziyi Yang and Longguang Zhong and Xiaojun Quan and Xinting Huang and Wei Bi},
106
- journal={arXiv preprint arXiv:2402.16107},
107
  year={2024}
108
  }
109
  ```
 
16
 
17
 
18
  <h4> |<a href="https://arxiv.org/abs/2401.10491"> πŸ“‘ FuseLLM Paper @ICLR2024 </a> |
19
+ <a href="https://arxiv.org/abs/2408.07990"> πŸ“‘ FuseChat Tech Report </a> |
20
  <a href="https://huggingface.co/FuseAI"> πŸ€— HuggingFace Repo </a> |
21
  <a href="https://github.com/fanqiwan/FuseLLM"> 🐱 GitHub Repo </a> |
22
  </h4>
 
39
 
40
  ### FuseChat [SOTA 7B LLM on MT-Bench]
41
 
42
+ - **Aug 16, 2024:** πŸ”₯πŸ”₯πŸ”₯πŸ”₯ We update the [FuseChat tech report](https://arxiv.org/abs/2408.07990) and release [FuseChat-7B-v2.0](https://huggingface.co/FuseAI/FuseChat-7B-v2.0), which is the fusion of six prominent chat LLMs with diverse architectures and scales, namely [OpenChat-3.5-7B](https://huggingface.co/openchat/openchat_3.5), [Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha), [NH2-Solar-10.7B](https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B), [InternLM2-Chat-20B](https://huggingface.co/internlm/internlm2-chat-20b), [Mixtral-8x7B-Instruct](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1), and [Qwen1.5-Chat-72B](https://huggingface.co/Qwen/Qwen1.5-72B-Chat). FuseChat-7B-v2.0 achieves an average performance of **7.38** on MT-Bench (GPT-4-0125-Preview as judge LLM), which is comparable to [Mixtral-8x7B-Instruct](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) and approaches [GPT-3.5-Turbo-1106](https://platform.openai.com/docs/models/gpt-3-5-turbo).
43
+
44
  - **Mar 13, 2024:** πŸ”₯πŸ”₯πŸ”₯ We release a HuggingFace Space for [FuseChat-7B](https://huggingface.co/spaces/FuseAI/FuseChat-7B), try it now!
45
 
46
  - **Feb 26, 2024:** πŸ”₯πŸ”₯ We release [FuseChat-7B-VaRM](https://huggingface.co/FuseAI/FuseChat-7B-VaRM), which is the fusion of three prominent chat LLMs with diverse architectures and scales, namely [NH2-Mixtral-8x7B](https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO), [NH2-Solar-10.7B](https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B), and [OpenChat-3.5-7B](https://huggingface.co/openchat/openchat_3.5). FuseChat-7B-VaRM achieves an average performance of **8.22** on MT-Bench, outperforming various powerful chat LLMs like [Starling-7B](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha), [Yi-34B-Chat](https://huggingface.co/01-ai/Yi-34B-Chat), and [Tulu-2-DPO-70B](https://huggingface.co/allenai/tulu-2-dpo-70b), even surpassing [GPT-3.5 (March)](https://platform.openai.com/docs/models/gpt-3-5-turbo), [Claude-2.1](https://www.anthropic.com/news/claude-2-1), and approaching [Mixtral-8x7B-Instruct](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1).
 
48
  - **Feb 25, 2024:** πŸ”₯ We release [FuseChat-Mixture](https://huggingface.co/datasets/FuseAI/FuseChat-Mixture), which is a comprehensive training dataset covers different styles and capabilities, featuring both human-written and model-generated, and spanning general instruction-following and specific skills.
49
 
50
  <p align="center">
51
+ <img src="tab0.png" width="60%"> <br>
52
+ </p>
53
+
54
+ <p align="center">
55
+ <img src="tab1.png" width="95%"> <br>
56
  </p>
57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
 
59
  ### FuseLLM [Surpassing Llama-2-7B]
60
 
61
  - **Jan 22, 2024:** πŸ”₯ We release [FuseLLM-7B](https://huggingface.co/Wanfq/FuseLLM-7B), which is the fusion of three open-source foundation LLMs with distinct architectures, including [Llama-2-7B](https://huggingface.co/meta-llama/Llama-2-7b-hf), [OpenLLaMA-7B](https://huggingface.co/openlm-research/open_llama_7b_v2), and [MPT-7B](https://huggingface.co/mosaicml/mpt-7b).
62
 
63
+ <p align="center">
64
+ <img src="fig0.png" width="95%"> <br>
65
+ </p>
 
 
 
 
 
66
 
67
+ <p align="center">
68
+ <img src="fig1.png" width="95%"> <br>
69
+ </p>
 
 
 
 
70
 
71
 
72
  ## Citation
 
86
  ```
87
  @article{wan2024fusechat,
88
  title={FuseChat: Knowledge Fusion of Chat Models},
89
+ author={Fanqi Wan and Longguang Zhong and Ziyi Yang and Ruijun Chen and Xiaojun Quan},
90
+ journal={arXiv preprint arXiv:2408.07990},
91
  year={2024}
92
  }
93
  ```