app.py
CHANGED
@@ -5,19 +5,23 @@ import numpy as np
|
|
5 |
from PIL import Image
|
6 |
from diffusers import DiffusionPipeline
|
7 |
from huggingface_hub import login
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
11 |
|
12 |
import torch
|
13 |
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
|
14 |
|
15 |
model_id = "stabilityai/stable-diffusion-2-1"
|
16 |
|
|
|
17 |
# Use the DPMSolverMultistepScheduler (DPM-Solver++) scheduler here instead
|
18 |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
19 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
20 |
-
pipe = pipe.to(
|
21 |
|
22 |
def resize(value,img):
|
23 |
img = Image.open(img)
|
@@ -28,7 +32,7 @@ def infer(source_img, prompt, negative_prompt, guide, steps, seed, Strength):
|
|
28 |
generator = torch.Generator(device).manual_seed(seed)
|
29 |
source_image = resize(768, source_img)
|
30 |
source_image.save('source.png')
|
31 |
-
image = pipe(prompt, negative_prompt=negative_prompt,
|
32 |
return image
|
33 |
|
34 |
gr.Interface(fn=infer, inputs=[gr.Image(source="upload", type="filepath", label="Raw Image. Must Be .png"), gr.Textbox(label = 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum'), gr.Textbox(label='What you Do Not want the AI to generate.'),
|
@@ -36,4 +40,4 @@ gr.Interface(fn=infer, inputs=[gr.Image(source="upload", type="filepath", label=
|
|
36 |
gr.Slider(1, 25, value = 10, step = 1, label = 'Number of Iterations'),
|
37 |
gr.Slider(label = "Seed", minimum = 0, maximum = 987654321987654321, step = 1, randomize = True),
|
38 |
gr.Slider(label='Strength', minimum = 0, maximum = 1, step = .05, value = .5)],
|
39 |
-
outputs='image', title = "Stable Diffusion
|
|
|
5 |
from PIL import Image
|
6 |
from diffusers import DiffusionPipeline
|
7 |
from huggingface_hub import login
|
8 |
+
import gradio as gr
|
9 |
+
import torch
|
10 |
+
import numpy as np
|
11 |
+
from PIL import Image
|
12 |
+
from datasets import load_dataset
|
13 |
+
from diffusers import StableDiffusionImg2ImgPipeline
|
14 |
|
15 |
import torch
|
16 |
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
|
17 |
|
18 |
model_id = "stabilityai/stable-diffusion-2-1"
|
19 |
|
20 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
# Use the DPMSolverMultistepScheduler (DPM-Solver++) scheduler here instead
|
22 |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
23 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
24 |
+
pipe = pipe.to(device)
|
25 |
|
26 |
def resize(value,img):
|
27 |
img = Image.open(img)
|
|
|
32 |
generator = torch.Generator(device).manual_seed(seed)
|
33 |
source_image = resize(768, source_img)
|
34 |
source_image.save('source.png')
|
35 |
+
image = pipe(prompt, negative_prompt=negative_prompt, init_image=source_image, strength=Strength, guidance_scale=guide, num_inference_steps=steps).images[0]
|
36 |
return image
|
37 |
|
38 |
gr.Interface(fn=infer, inputs=[gr.Image(source="upload", type="filepath", label="Raw Image. Must Be .png"), gr.Textbox(label = 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum'), gr.Textbox(label='What you Do Not want the AI to generate.'),
|
|
|
40 |
gr.Slider(1, 25, value = 10, step = 1, label = 'Number of Iterations'),
|
41 |
gr.Slider(label = "Seed", minimum = 0, maximum = 987654321987654321, step = 1, randomize = True),
|
42 |
gr.Slider(label='Strength', minimum = 0, maximum = 1, step = .05, value = .5)],
|
43 |
+
outputs='image', title = "Stable Diffusion 2.1 Image to Image Pipeline CPU", description = "For more information on Stable Diffusion 2.1 see https://github.com/Stability-AI/stablediffusion <br><br>Upload an Image (<b>MUST Be .PNG and 512x512 or 768x768</b>) enter a Prompt, or let it just do its Thing, then click submit. 10 Iterations takes about ~900-1200 seconds currently. For more informationon about Stable Diffusion or Suggestions for prompts, keywords, artists or styles see https://github.com/Maks-s/sd-akashic", article = "Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").queue(max_size=5).launch()
|