img2img / app.py
Furkan12's picture
das
9d6a6a8 verified
raw
history blame
2.06 kB
import gradio as gr
import pandas as pd
import torch
import numpy as np
from PIL import Image
from diffusers import DiffusionPipeline
from huggingface_hub import login
import gradio as gr
import torch
import numpy as np
from PIL import Image
from datasets import load_dataset
from diffusers import StableDiffusionImg2ImgPipeline
import torch
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
model_id = "stabilityai/stable-diffusion-2-1"
device = "cpu"
# DPM-Solver++ scheduler'ını kullan, torch_dtype belirtme
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to(device)
def resize(value,img):
img = Image.open(img)
img = img.resize((value,value))
return img
def infer(source_img, prompt, negative_prompt, guide, steps, seed, Strength):
generator = torch.Generator(device).manual_seed(seed)
source_image = resize(768, source_img)
source_image.save('source.png')
image = pipe(prompt, negative_prompt=negative_prompt, init_image=source_image, strength=Strength, guidance_scale=guide, num_inference_steps=steps).images[0]
return image
gr.Interface(
fn=infer,
inputs=[
gr.inputs.Image(type="filepath", label="Raw Image. Must Be .png"), # Güncellenmiş kullanım
gr.Textbox(label='Prompt Input Text. 77 Token (Keyword or Symbol) Maximum'),
gr.Textbox(label='What you Do Not want the AI to generate.'),
gr.Slider(2, 15, value=7, label='Guidance Scale'),
gr.Slider(1, 25, value=10, step=1, label='Number of Iterations'),
gr.Slider(label="Seed", minimum=0, maximum=987654321987654321, step=1, randomize=True),
gr.Slider(label='Strength', minimum=0, maximum=1, step=.05, value=.5)
],
outputs='image',
title="Stable Diffusion 2.1 Image to Image Pipeline on CPU",
description="For more information on Stable Diffusion 2.1 see https://github.com/Stability-AI/stablediffusion"
).launch()