Spaces:
Runtime error
Runtime error
| import whisper | |
| model = whisper.load_model("base") | |
| from transformers import pipeline | |
| en_fr_translator = pipeline("translation_en_to_fr") | |
| import gradio as gr | |
| import time | |
| def transcribe(audio): | |
| #time.sleep(3) | |
| # load audio and pad/trim it to fit 30 seconds | |
| audio = whisper.load_audio(audio) | |
| audio = whisper.pad_or_trim(audio) | |
| # make log-Mel spectrogram and move to the same device as the model | |
| mel = whisper.log_mel_spectrogram(audio).to(model.device) | |
| # detect the spoken language | |
| _, probs = model.detect_language(mel) | |
| lang=(f"Detected language: {max(probs, key=probs.get)}") | |
| # decode the audio | |
| options = whisper.DecodingOptions() | |
| result = whisper.decode(model, mel, options) | |
| word= result.text | |
| trans = en_fr_translator(word) | |
| Trans = trans[0]['translation_text'] | |
| result=f"{lang}\n{word}\n\nFrench translation: {Trans}" | |
| return result | |
| gr.Interface( | |
| title = 'OpenAI Whisper ASR Gradio Web UI', | |
| fn=transcribe, | |
| inputs=[ | |
| gr.inputs.Audio(source="microphone", type="filepath") | |
| ], | |
| outputs=[ | |
| "textbox" | |
| ], | |
| live=True).launch() |