Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| import os | |
| import librosa | |
| import base64 | |
| import io | |
| import gradio as gr | |
| import re | |
| import numpy as np | |
| import torch | |
| import torchaudio | |
| import spaces | |
| from funasr import AutoModel | |
| model = "FunAudioLLM/SenseVoiceSmall" | |
| model = AutoModel(model=model, | |
| vad_model="iic/speech_fsmn_vad_zh-cn-16k-common-pytorch", | |
| vad_kwargs={"max_single_segment_time": 30000}, | |
| hub="hf", | |
| device="cuda" | |
| ) | |
| import re | |
| emo_dict = { | |
| "<|HAPPY|>": "๐", | |
| "<|SAD|>": "๐", | |
| "<|ANGRY|>": "๐ก", | |
| "<|NEUTRAL|>": "", | |
| "<|FEARFUL|>": "๐ฐ", | |
| "<|DISGUSTED|>": "๐คข", | |
| "<|SURPRISED|>": "๐ฎ", | |
| } | |
| event_dict = { | |
| "<|BGM|>": "๐ผ", | |
| "<|Speech|>": "", | |
| "<|Applause|>": "๐", | |
| "<|Laughter|>": "๐", | |
| "<|Cry|>": "๐ญ", | |
| "<|Sneeze|>": "๐คง", | |
| "<|Breath|>": "", | |
| "<|Cough|>": "๐คง", | |
| } | |
| emoji_dict = { | |
| "<|nospeech|><|Event_UNK|>": "โ", | |
| "<|zh|>": "", | |
| "<|en|>": "", | |
| "<|yue|>": "", | |
| "<|ja|>": "", | |
| "<|ko|>": "", | |
| "<|nospeech|>": "", | |
| "<|HAPPY|>": "๐", | |
| "<|SAD|>": "๐", | |
| "<|ANGRY|>": "๐ก", | |
| "<|NEUTRAL|>": "", | |
| "<|BGM|>": "๐ผ", | |
| "<|Speech|>": "", | |
| "<|Applause|>": "๐", | |
| "<|Laughter|>": "๐", | |
| "<|FEARFUL|>": "๐ฐ", | |
| "<|DISGUSTED|>": "๐คข", | |
| "<|SURPRISED|>": "๐ฎ", | |
| "<|Cry|>": "๐ญ", | |
| "<|EMO_UNKNOWN|>": "", | |
| "<|Sneeze|>": "๐คง", | |
| "<|Breath|>": "", | |
| "<|Cough|>": "๐ท", | |
| "<|Sing|>": "", | |
| "<|Speech_Noise|>": "", | |
| "<|withitn|>": "", | |
| "<|woitn|>": "", | |
| "<|GBG|>": "", | |
| "<|Event_UNK|>": "", | |
| } | |
| lang_dict = { | |
| "<|zh|>": "<|lang|>", | |
| "<|en|>": "<|lang|>", | |
| "<|yue|>": "<|lang|>", | |
| "<|ja|>": "<|lang|>", | |
| "<|ko|>": "<|lang|>", | |
| "<|nospeech|>": "<|lang|>", | |
| } | |
| emo_set = {"๐", "๐", "๐ก", "๐ฐ", "๐คข", "๐ฎ"} | |
| event_set = {"๐ผ", "๐", "๐", "๐ญ", "๐คง", "๐ท",} | |
| def format_str(s): | |
| for sptk in emoji_dict: | |
| s = s.replace(sptk, emoji_dict[sptk]) | |
| return s | |
| def format_str_v2(s): | |
| sptk_dict = {} | |
| for sptk in emoji_dict: | |
| sptk_dict[sptk] = s.count(sptk) | |
| s = s.replace(sptk, "") | |
| emo = "<|NEUTRAL|>" | |
| for e in emo_dict: | |
| if sptk_dict[e] > sptk_dict[emo]: | |
| emo = e | |
| for e in event_dict: | |
| if sptk_dict[e] > 0: | |
| s = event_dict[e] + s | |
| s = s + emo_dict[emo] | |
| for emoji in emo_set.union(event_set): | |
| s = s.replace(" " + emoji, emoji) | |
| s = s.replace(emoji + " ", emoji) | |
| return s.strip() | |
| def format_str_v3(s): | |
| def get_emo(s): | |
| return s[-1] if s[-1] in emo_set else None | |
| def get_event(s): | |
| return s[0] if s[0] in event_set else None | |
| s = s.replace("<|nospeech|><|Event_UNK|>", "โ") | |
| for lang in lang_dict: | |
| s = s.replace(lang, "<|lang|>") | |
| s_list = [format_str_v2(s_i).strip(" ") for s_i in s.split("<|lang|>")] | |
| new_s = " " + s_list[0] | |
| cur_ent_event = get_event(new_s) | |
| for i in range(1, len(s_list)): | |
| if len(s_list[i]) == 0: | |
| continue | |
| if get_event(s_list[i]) == cur_ent_event and get_event(s_list[i]) != None: | |
| s_list[i] = s_list[i][1:] | |
| #else: | |
| cur_ent_event = get_event(s_list[i]) | |
| if get_emo(s_list[i]) != None and get_emo(s_list[i]) == get_emo(new_s): | |
| new_s = new_s[:-1] | |
| new_s += s_list[i].strip().lstrip() | |
| new_s = new_s.replace("The.", " ") | |
| return new_s.strip() | |
| def model_inference(input_wav, language, fs=16000): | |
| # task_abbr = {"Speech Recognition": "ASR", "Rich Text Transcription": ("ASR", "AED", "SER")} | |
| language_abbr = {"auto": "auto", "zh": "zh", "en": "en", "yue": "yue", "ja": "ja", "ko": "ko", | |
| "nospeech": "nospeech"} | |
| # task = "Speech Recognition" if task is None else task | |
| language = "auto" if len(language) < 1 else language | |
| selected_language = language_abbr[language] | |
| # selected_task = task_abbr.get(task) | |
| # print(f"input_wav: {type(input_wav)}, {input_wav[1].shape}, {input_wav}") | |
| if isinstance(input_wav, tuple): | |
| fs, input_wav = input_wav | |
| input_wav = input_wav.astype(np.float32) / np.iinfo(np.int16).max | |
| if len(input_wav.shape) > 1: | |
| input_wav = input_wav.mean(-1) | |
| if fs != 16000: | |
| print(f"audio_fs: {fs}") | |
| resampler = torchaudio.transforms.Resample(fs, 16000) | |
| input_wav_t = torch.from_numpy(input_wav).to(torch.float32) | |
| input_wav = resampler(input_wav_t[None, :])[0, :].numpy() | |
| merge_vad = True #False if selected_task == "ASR" else True | |
| print(f"language: {language}, merge_vad: {merge_vad}") | |
| text = model.generate(input=input_wav, | |
| cache={}, | |
| language=language, | |
| use_itn=True, | |
| batch_size_s=500, merge_vad=merge_vad) | |
| print(text) | |
| text = text[0]["text"] | |
| text = format_str_v3(text) | |
| print(text) | |
| return text | |
| audio_examples = [ | |
| ["example/zh.mp3", "zh"], | |
| ["example/yue.mp3", "yue"], | |
| ["example/en.mp3", "en"], | |
| ["example/ja.mp3", "ja"], | |
| ["example/ko.mp3", "ko"], | |
| ["example/emo_1.wav", "auto"], | |
| ["example/emo_2.wav", "auto"], | |
| ["example/emo_3.wav", "auto"], | |
| ["example/rich_1.wav", "auto"], | |
| ["example/rich_2.wav", "auto"], | |
| ["example/longwav_1.wav", "auto"], | |
| ["example/longwav_2.wav", "auto"], | |
| ["example/longwav_3.wav", "auto"], | |
| ] | |
| html_content = """ | |
| <div> | |
| <h2 style="font-size: 22px;margin-left: 0px;">Voice Understanding Model: SenseVoice-Small</h2> | |
| <p style="font-size: 18px;margin-left: 20px;">SenseVoice-Small is an encoder-only speech foundation model designed for rapid voice understanding. It encompasses a variety of features including automatic speech recognition (ASR), spoken language identification (LID), speech emotion recognition (SER), and acoustic event detection (AED). SenseVoice-Small supports multilingual recognition for Chinese, English, Cantonese, Japanese, and Korean. Additionally, it offers exceptionally low inference latency, performing 7 times faster than Whisper-small and 17 times faster than Whisper-large.</p> | |
| <h2 style="font-size: 22px;margin-left: 0px;">Usage</h2> <p style="font-size: 18px;margin-left: 20px;">Upload an audio file or input through a microphone, then select the task and language. the audio is transcribed into corresponding text along with associated emotions (๐ happy, ๐ก angry/exicting, ๐ sad) and types of sound events (๐ laughter, ๐ผ music, ๐ applause, ๐คง cough&sneeze, ๐ญ cry). The event labels are placed in the front of the text and the emotion are in the back of the text.</p> | |
| <p style="font-size: 18px;margin-left: 20px;">Recommended audio input duration is below 30 seconds. For audio longer than 30 seconds, local deployment is recommended.</p> | |
| <h2 style="font-size: 22px;margin-left: 0px;">Repo</h2> | |
| <p style="font-size: 18px;margin-left: 20px;"><a href="https://github.com/FunAudioLLM/SenseVoice" target="_blank">SenseVoice</a>: multilingual speech understanding model</p> | |
| <p style="font-size: 18px;margin-left: 20px;"><a href="https://github.com/modelscope/FunASR" target="_blank">FunASR</a>: fundamental speech recognition toolkit</p> | |
| <p style="font-size: 18px;margin-left: 20px;"><a href="https://github.com/FunAudioLLM/CosyVoice" target="_blank">CosyVoice</a>: high-quality multilingual TTS model</p> | |
| </div> | |
| """ | |
| def launch(): | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| # gr.Markdown(description) | |
| gr.HTML(html_content) | |
| with gr.Row(): | |
| with gr.Column(): | |
| audio_inputs = gr.Audio(label="Upload audio or use the microphone") | |
| with gr.Accordion("Configuration"): | |
| language_inputs = gr.Dropdown(choices=["auto", "zh", "en", "yue", "ja", "ko", "nospeech"], | |
| value="auto", | |
| label="Language") | |
| fn_button = gr.Button("Start", variant="primary") | |
| text_outputs = gr.Textbox(label="Results") | |
| gr.Examples(examples=audio_examples, inputs=[audio_inputs, language_inputs], examples_per_page=20) | |
| fn_button.click(model_inference, inputs=[audio_inputs, language_inputs], outputs=text_outputs) | |
| demo.launch() | |
| if __name__ == "__main__": | |
| # iface.launch() | |
| launch() | |