Spaces:
Running
on
L4
Running
on
L4
import torch | |
import torch.nn as nn | |
from torch.nn.utils import weight_norm | |
from typing import List, Optional, Tuple | |
from einops import rearrange | |
from torchaudio.transforms import Spectrogram | |
class MultipleDiscriminator(nn.Module): | |
def __init__( | |
self, mpd: nn.Module, mrd: nn.Module | |
): | |
super().__init__() | |
self.mpd = mpd | |
self.mrd = mrd | |
def forward(self, y: torch.Tensor, y_hat: torch.Tensor): | |
y_d_rs, y_d_gs, fmap_rs, fmap_gs = [], [], [], [] | |
this_y_d_rs, this_y_d_gs, this_fmap_rs, this_fmap_gs = self.mpd(y.unsqueeze(dim=1), y_hat.unsqueeze(dim=1)) | |
y_d_rs += this_y_d_rs | |
y_d_gs += this_y_d_gs | |
fmap_rs += this_fmap_rs | |
fmap_gs += this_fmap_gs | |
this_y_d_rs, this_y_d_gs, this_fmap_rs, this_fmap_gs = self.mrd(y, y_hat) | |
y_d_rs += this_y_d_rs | |
y_d_gs += this_y_d_gs | |
fmap_rs += this_fmap_rs | |
fmap_gs += this_fmap_gs | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
class MultiResolutionDiscriminator(nn.Module): | |
def __init__( | |
self, | |
fft_sizes: Tuple[int, ...] = (2048, 1024, 512), | |
num_embeddings: Optional[int] = None, | |
): | |
""" | |
Multi-Resolution Discriminator module adapted from https://github.com/descriptinc/descript-audio-codec. | |
Additionally, it allows incorporating conditional information with a learned embeddings table. | |
Args: | |
fft_sizes (tuple[int]): Tuple of window lengths for FFT. Defaults to (2048, 1024, 512). | |
num_embeddings (int, optional): Number of embeddings. None means non-conditional discriminator. | |
Defaults to None. | |
""" | |
super().__init__() | |
self.discriminators = nn.ModuleList( | |
[DiscriminatorR(window_length=w, num_embeddings=num_embeddings) for w in fft_sizes] | |
) | |
def forward( | |
self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: torch.Tensor = None | |
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]: | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for d in self.discriminators: | |
y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id) | |
y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
class DiscriminatorR(nn.Module): | |
def __init__( | |
self, | |
window_length: int, | |
num_embeddings: Optional[int] = None, | |
channels: int = 32, | |
hop_factor: float = 0.25, | |
bands: Tuple[Tuple[float, float], ...] = ((0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)), | |
): | |
super().__init__() | |
self.window_length = window_length | |
self.hop_factor = hop_factor | |
self.spec_fn = Spectrogram( | |
n_fft=window_length, hop_length=int(window_length * hop_factor), win_length=window_length, power=None | |
) | |
n_fft = window_length // 2 + 1 | |
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands] | |
self.bands = bands | |
convs = lambda: nn.ModuleList( | |
[ | |
weight_norm(nn.Conv2d(2, channels, (3, 9), (1, 1), padding=(1, 4))), | |
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))), | |
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))), | |
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))), | |
weight_norm(nn.Conv2d(channels, channels, (3, 3), (1, 1), padding=(1, 1))), | |
] | |
) | |
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))]) | |
if num_embeddings is not None: | |
self.emb = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=channels) | |
torch.nn.init.zeros_(self.emb.weight) | |
self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), (1, 1), padding=(1, 1))) | |
def spectrogram(self, x): | |
# Remove DC offset | |
x = x - x.mean(dim=-1, keepdims=True) | |
# Peak normalize the volume of input audio | |
x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9) | |
x = self.spec_fn(x) | |
x = torch.view_as_real(x) | |
x = rearrange(x, "b f t c -> b c t f") | |
# Split into bands | |
x_bands = [x[..., b[0]: b[1]] for b in self.bands] | |
return x_bands | |
def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor = None): | |
x_bands = self.spectrogram(x) | |
fmap = [] | |
x = [] | |
for band, stack in zip(x_bands, self.band_convs): | |
for i, layer in enumerate(stack): | |
band = layer(band) | |
band = torch.nn.functional.leaky_relu(band, 0.1) | |
if i > 0: | |
fmap.append(band) | |
x.append(band) | |
x = torch.cat(x, dim=-1) | |
if cond_embedding_id is not None: | |
emb = self.emb(cond_embedding_id) | |
h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True) | |
else: | |
h = 0 | |
x = self.conv_post(x) | |
fmap.append(x) | |
x += h | |
return x, fmap | |