Fucius's picture
Upload 422 files
df6c67d verified
from abc import abstractmethod
from time import perf_counter
from typing import Any, List, Tuple, Union
import numpy as np
from inference.core.cache.model_artifacts import clear_cache, initialise_cache
from inference.core.entities.requests.inference import InferenceRequest
from inference.core.entities.responses.inference import InferenceResponse, StubResponse
from inference.core.models.base import Model
from inference.core.models.types import PreprocessReturnMetadata
from inference.core.utils.image_utils import np_image_to_base64
class ModelStub(Model):
def __init__(self, model_id: str, api_key: str):
super().__init__()
self.model_id = model_id
self.api_key = api_key
self.dataset_id, self.version_id = model_id.split("/")
self.metrics = {"num_inferences": 0, "avg_inference_time": 0.0}
initialise_cache(model_id=model_id)
def infer_from_request(
self, request: InferenceRequest
) -> Union[InferenceResponse, List[InferenceResponse]]:
t1 = perf_counter()
stub_prediction = self.infer(**request.dict())
response = self.make_response(request=request, prediction=stub_prediction)
response.time = perf_counter() - t1
return response
def infer(self, *args, **kwargs) -> Any:
_ = self.preprocess()
dummy_prediction = self.predict()
return self.postprocess(dummy_prediction)
def preprocess(
self, *args, **kwargs
) -> Tuple[np.ndarray, PreprocessReturnMetadata]:
return np.zeros((128, 128, 3), dtype=np.uint8), {} # type: ignore
def predict(self, *args, **kwargs) -> Tuple[np.ndarray, ...]:
return (np.zeros((1, 8)),)
def postprocess(self, predictions: Tuple[np.ndarray, ...], *args, **kwargs) -> Any:
return {
"is_stub": True,
"model_id": self.model_id,
}
def clear_cache(self) -> None:
clear_cache(model_id=self.model_id)
@abstractmethod
def make_response(
self, request: InferenceRequest, prediction: dict, **kwargs
) -> Union[InferenceResponse, List[InferenceResponse]]:
pass
class ClassificationModelStub(ModelStub):
task_type = "classification"
def make_response(
self, request: InferenceRequest, prediction: dict, **kwargs
) -> Union[InferenceResponse, List[InferenceResponse]]:
stub_visualisation = None
if getattr(request, "visualize_predictions", False):
stub_visualisation = np_image_to_base64(
np.zeros((128, 128, 3), dtype=np.uint8)
)
return StubResponse(
is_stub=prediction["is_stub"],
model_id=prediction["model_id"],
task_type=self.task_type,
visualization=stub_visualisation,
)
class ObjectDetectionModelStub(ModelStub):
task_type = "object-detection"
def make_response(
self, request: InferenceRequest, prediction: dict, **kwargs
) -> Union[InferenceResponse, List[InferenceResponse]]:
stub_visualisation = None
if getattr(request, "visualize_predictions", False):
stub_visualisation = np_image_to_base64(
np.zeros((128, 128, 3), dtype=np.uint8)
)
return StubResponse(
is_stub=prediction["is_stub"],
model_id=prediction["model_id"],
task_type=self.task_type,
visualization=stub_visualisation,
)
class InstanceSegmentationModelStub(ModelStub):
task_type = "instance-segmentation"
def make_response(
self, request: InferenceRequest, prediction: dict, **kwargs
) -> Union[InferenceResponse, List[InferenceResponse]]:
stub_visualisation = None
if getattr(request, "visualize_predictions", False):
stub_visualisation = np_image_to_base64(
np.zeros((128, 128, 3), dtype=np.uint8)
)
return StubResponse(
is_stub=prediction["is_stub"],
model_id=prediction["model_id"],
task_type=self.task_type,
visualization=stub_visualisation,
)
class KeypointsDetectionModelStub(ModelStub):
task_type = "keypoint-detection"
def make_response(
self, request: InferenceRequest, prediction: dict, **kwargs
) -> Union[InferenceResponse, List[InferenceResponse]]:
stub_visualisation = None
if getattr(request, "visualize_predictions", False):
stub_visualisation = np_image_to_base64(
np.zeros((128, 128, 3), dtype=np.uint8)
)
return StubResponse(
is_stub=prediction["is_stub"],
model_id=prediction["model_id"],
task_type=self.task_type,
visualization=stub_visualisation,
)