OMG / inference /models /yolov8 /yolov8_object_detection.py
Fucius's picture
Upload 422 files
df6c67d verified
raw
history blame
1.63 kB
from typing import Tuple
import numpy as np
from inference.core.models.object_detection_base import (
ObjectDetectionBaseOnnxRoboflowInferenceModel,
)
class YOLOv8ObjectDetection(ObjectDetectionBaseOnnxRoboflowInferenceModel):
"""Roboflow ONNX Object detection model (Implements an object detection specific infer method).
This class is responsible for performing object detection using the YOLOv8 model
with ONNX runtime.
Attributes:
weights_file (str): Path to the ONNX weights file.
Methods:
predict: Performs object detection on the given image using the ONNX session.
"""
@property
def weights_file(self) -> str:
"""Gets the weights file for the YOLOv8 model.
Returns:
str: Path to the ONNX weights file.
"""
return "weights.onnx"
def predict(self, img_in: np.ndarray, **kwargs) -> Tuple[np.ndarray]:
"""Performs object detection on the given image using the ONNX session.
Args:
img_in (np.ndarray): Input image as a NumPy array.
Returns:
Tuple[np.ndarray]: NumPy array representing the predictions, including boxes, confidence scores, and class confidence scores.
"""
predictions = self.onnx_session.run(None, {self.input_name: img_in})[0]
predictions = predictions.transpose(0, 2, 1)
boxes = predictions[:, :, :4]
class_confs = predictions[:, :, 4:]
confs = np.expand_dims(np.max(class_confs, axis=2), axis=2)
predictions = np.concatenate([boxes, confs, class_confs], axis=2)
return (predictions,)