Fucius's picture
Upload 422 files
df6c67d verified
raw
history blame
7.16 kB
from collections import OrderedDict
from typing import List, Optional, Tuple
from uuid import uuid4
import numpy as np
from inference.core import logger
from inference.core.active_learning.cache_operations import (
return_strategy_credit,
use_credit_of_matching_strategy,
)
from inference.core.active_learning.entities import (
ActiveLearningConfiguration,
ImageDimensions,
Prediction,
PredictionType,
SamplingMethod,
)
from inference.core.active_learning.post_processing import (
adjust_prediction_to_client_scaling_factor,
encode_prediction,
)
from inference.core.cache.base import BaseCache
from inference.core.env import ACTIVE_LEARNING_TAGS
from inference.core.roboflow_api import (
annotate_image_at_roboflow,
register_image_at_roboflow,
)
from inference.core.utils.image_utils import encode_image_to_jpeg_bytes
from inference.core.utils.preprocess import downscale_image_keeping_aspect_ratio
def execute_sampling(
image: np.ndarray,
prediction: Prediction,
prediction_type: PredictionType,
sampling_methods: List[SamplingMethod],
) -> List[str]:
matching_strategies = []
for method in sampling_methods:
sampling_result = method.sample(image, prediction, prediction_type)
if sampling_result:
matching_strategies.append(method.name)
return matching_strategies
def execute_datapoint_registration(
cache: BaseCache,
matching_strategies: List[str],
image: np.ndarray,
prediction: Prediction,
prediction_type: PredictionType,
configuration: ActiveLearningConfiguration,
api_key: str,
batch_name: str,
) -> None:
local_image_id = str(uuid4())
encoded_image, scaling_factor = prepare_image_to_registration(
image=image,
desired_size=configuration.max_image_size,
jpeg_compression_level=configuration.jpeg_compression_level,
)
prediction = adjust_prediction_to_client_scaling_factor(
prediction=prediction,
scaling_factor=scaling_factor,
prediction_type=prediction_type,
)
matching_strategies_limits = OrderedDict(
(strategy_name, configuration.strategies_limits[strategy_name])
for strategy_name in matching_strategies
)
strategy_with_spare_credit = use_credit_of_matching_strategy(
cache=cache,
workspace=configuration.workspace_id,
project=configuration.dataset_id,
matching_strategies_limits=matching_strategies_limits,
)
if strategy_with_spare_credit is None:
logger.debug(f"Limit on Active Learning strategy reached.")
return None
register_datapoint_at_roboflow(
cache=cache,
strategy_with_spare_credit=strategy_with_spare_credit,
encoded_image=encoded_image,
local_image_id=local_image_id,
prediction=prediction,
prediction_type=prediction_type,
configuration=configuration,
api_key=api_key,
batch_name=batch_name,
)
def prepare_image_to_registration(
image: np.ndarray,
desired_size: Optional[ImageDimensions],
jpeg_compression_level: int,
) -> Tuple[bytes, float]:
scaling_factor = 1.0
if desired_size is not None:
height_before_scale = image.shape[0]
image = downscale_image_keeping_aspect_ratio(
image=image,
desired_size=desired_size.to_wh(),
)
scaling_factor = image.shape[0] / height_before_scale
return (
encode_image_to_jpeg_bytes(image=image, jpeg_quality=jpeg_compression_level),
scaling_factor,
)
def register_datapoint_at_roboflow(
cache: BaseCache,
strategy_with_spare_credit: str,
encoded_image: bytes,
local_image_id: str,
prediction: Prediction,
prediction_type: PredictionType,
configuration: ActiveLearningConfiguration,
api_key: str,
batch_name: str,
) -> None:
tags = collect_tags(
configuration=configuration,
sampling_strategy=strategy_with_spare_credit,
)
roboflow_image_id = safe_register_image_at_roboflow(
cache=cache,
strategy_with_spare_credit=strategy_with_spare_credit,
encoded_image=encoded_image,
local_image_id=local_image_id,
configuration=configuration,
api_key=api_key,
batch_name=batch_name,
tags=tags,
)
if is_prediction_registration_forbidden(
prediction=prediction,
persist_predictions=configuration.persist_predictions,
roboflow_image_id=roboflow_image_id,
):
return None
encoded_prediction, prediction_file_type = encode_prediction(
prediction=prediction, prediction_type=prediction_type
)
_ = annotate_image_at_roboflow(
api_key=api_key,
dataset_id=configuration.dataset_id,
local_image_id=local_image_id,
roboflow_image_id=roboflow_image_id,
annotation_content=encoded_prediction,
annotation_file_type=prediction_file_type,
is_prediction=True,
)
def collect_tags(
configuration: ActiveLearningConfiguration, sampling_strategy: str
) -> List[str]:
tags = ACTIVE_LEARNING_TAGS if ACTIVE_LEARNING_TAGS is not None else []
tags.extend(configuration.tags)
tags.extend(configuration.strategies_tags[sampling_strategy])
if configuration.persist_predictions:
# this replacement is needed due to backend input validation
tags.append(configuration.model_id.replace("/", "-"))
return tags
def safe_register_image_at_roboflow(
cache: BaseCache,
strategy_with_spare_credit: str,
encoded_image: bytes,
local_image_id: str,
configuration: ActiveLearningConfiguration,
api_key: str,
batch_name: str,
tags: List[str],
) -> Optional[str]:
credit_to_be_returned = False
try:
registration_response = register_image_at_roboflow(
api_key=api_key,
dataset_id=configuration.dataset_id,
local_image_id=local_image_id,
image_bytes=encoded_image,
batch_name=batch_name,
tags=tags,
)
image_duplicated = registration_response.get("duplicate", False)
if image_duplicated:
credit_to_be_returned = True
logger.warning(f"Image duplication detected: {registration_response}.")
return None
return registration_response["id"]
except Exception as error:
credit_to_be_returned = True
raise error
finally:
if credit_to_be_returned:
return_strategy_credit(
cache=cache,
workspace=configuration.workspace_id,
project=configuration.dataset_id,
strategy_name=strategy_with_spare_credit,
)
def is_prediction_registration_forbidden(
prediction: Prediction,
persist_predictions: bool,
roboflow_image_id: Optional[str],
) -> bool:
return (
roboflow_image_id is None
or persist_predictions is False
or prediction.get("is_stub", False) is True
or (len(prediction.get("predictions", [])) == 0 and "top" not in prediction)
)