OMG / inference /core /active_learning /cache_operations.py
Fucius's picture
Upload 422 files
df6c67d verified
raw
history blame
8.95 kB
import threading
from contextlib import contextmanager
from datetime import datetime
from typing import Generator, List, Optional, OrderedDict, Union
import redis.lock
from inference.core import logger
from inference.core.active_learning.entities import StrategyLimit, StrategyLimitType
from inference.core.active_learning.utils import TIMESTAMP_FORMAT
from inference.core.cache.base import BaseCache
MAX_LOCK_TIME = 5
SECONDS_IN_HOUR = 60 * 60
USAGE_KEY = "usage"
LIMIT_TYPE2KEY_INFIX_GENERATOR = {
StrategyLimitType.MINUTELY: lambda: f"minute_{datetime.utcnow().minute}",
StrategyLimitType.HOURLY: lambda: f"hour_{datetime.utcnow().hour}",
StrategyLimitType.DAILY: lambda: f"day_{datetime.utcnow().strftime(TIMESTAMP_FORMAT)}",
}
LIMIT_TYPE2KEY_EXPIRATION = {
StrategyLimitType.MINUTELY: 120,
StrategyLimitType.HOURLY: 2 * SECONDS_IN_HOUR,
StrategyLimitType.DAILY: 25 * SECONDS_IN_HOUR,
}
def use_credit_of_matching_strategy(
cache: BaseCache,
workspace: str,
project: str,
matching_strategies_limits: OrderedDict[str, List[StrategyLimit]],
) -> Optional[str]:
# In scope of this function, cache keys updates regarding usage limits for
# specific :workspace and :project are locked - to ensure increment to be done atomically
# Limits are accounted at the moment of registration - which may introduce inaccuracy
# given that registration is postponed from prediction
# Returns: strategy with spare credit if found - else None
with lock_limits(cache=cache, workspace=workspace, project=project):
strategy_with_spare_credit = find_strategy_with_spare_usage_credit(
cache=cache,
workspace=workspace,
project=project,
matching_strategies_limits=matching_strategies_limits,
)
if strategy_with_spare_credit is None:
return None
consume_strategy_limits_usage_credit(
cache=cache,
workspace=workspace,
project=project,
strategy_name=strategy_with_spare_credit,
)
return strategy_with_spare_credit
def return_strategy_credit(
cache: BaseCache,
workspace: str,
project: str,
strategy_name: str,
) -> None:
# In scope of this function, cache keys updates regarding usage limits for
# specific :workspace and :project are locked - to ensure decrement to be done atomically
# Returning strategy is a bit naive (we may add to a pool of credits from the next period - but only
# if we have previously taken from the previous one and some credits are used in the new pool) -
# in favour of easier implementation.
with lock_limits(cache=cache, workspace=workspace, project=project):
return_strategy_limits_usage_credit(
cache=cache,
workspace=workspace,
project=project,
strategy_name=strategy_name,
)
@contextmanager
def lock_limits(
cache: BaseCache,
workspace: str,
project: str,
) -> Generator[Union[threading.Lock, redis.lock.Lock], None, None]:
limits_lock_key = generate_cache_key_for_active_learning_usage_lock(
workspace=workspace,
project=project,
)
with cache.lock(key=limits_lock_key, expire=MAX_LOCK_TIME) as lock:
yield lock
def find_strategy_with_spare_usage_credit(
cache: BaseCache,
workspace: str,
project: str,
matching_strategies_limits: OrderedDict[str, List[StrategyLimit]],
) -> Optional[str]:
for strategy_name, strategy_limits in matching_strategies_limits.items():
rejected_by_strategy = (
datapoint_should_be_rejected_based_on_strategy_usage_limits(
cache=cache,
workspace=workspace,
project=project,
strategy_name=strategy_name,
strategy_limits=strategy_limits,
)
)
if not rejected_by_strategy:
return strategy_name
return None
def datapoint_should_be_rejected_based_on_strategy_usage_limits(
cache: BaseCache,
workspace: str,
project: str,
strategy_name: str,
strategy_limits: List[StrategyLimit],
) -> bool:
for strategy_limit in strategy_limits:
limit_reached = datapoint_should_be_rejected_based_on_limit_usage(
cache=cache,
workspace=workspace,
project=project,
strategy_name=strategy_name,
strategy_limit=strategy_limit,
)
if limit_reached:
logger.debug(
f"Violated Active Learning strategy limit: {strategy_limit.limit_type.name} "
f"with value {strategy_limit.value} for sampling strategy: {strategy_name}."
)
return True
return False
def datapoint_should_be_rejected_based_on_limit_usage(
cache: BaseCache,
workspace: str,
project: str,
strategy_name: str,
strategy_limit: StrategyLimit,
) -> bool:
current_usage = get_current_strategy_limit_usage(
cache=cache,
workspace=workspace,
project=project,
strategy_name=strategy_name,
limit_type=strategy_limit.limit_type,
)
if current_usage is None:
current_usage = 0
return current_usage >= strategy_limit.value
def consume_strategy_limits_usage_credit(
cache: BaseCache,
workspace: str,
project: str,
strategy_name: str,
) -> None:
for limit_type in StrategyLimitType:
consume_strategy_limit_usage_credit(
cache=cache,
workspace=workspace,
project=project,
strategy_name=strategy_name,
limit_type=limit_type,
)
def consume_strategy_limit_usage_credit(
cache: BaseCache,
workspace: str,
project: str,
strategy_name: str,
limit_type: StrategyLimitType,
) -> None:
current_value = get_current_strategy_limit_usage(
cache=cache,
limit_type=limit_type,
workspace=workspace,
project=project,
strategy_name=strategy_name,
)
if current_value is None:
current_value = 0
current_value += 1
set_current_strategy_limit_usage(
current_value=current_value,
cache=cache,
limit_type=limit_type,
workspace=workspace,
project=project,
strategy_name=strategy_name,
)
def return_strategy_limits_usage_credit(
cache: BaseCache,
workspace: str,
project: str,
strategy_name: str,
) -> None:
for limit_type in StrategyLimitType:
return_strategy_limit_usage_credit(
cache=cache,
workspace=workspace,
project=project,
strategy_name=strategy_name,
limit_type=limit_type,
)
def return_strategy_limit_usage_credit(
cache: BaseCache,
workspace: str,
project: str,
strategy_name: str,
limit_type: StrategyLimitType,
) -> None:
current_value = get_current_strategy_limit_usage(
cache=cache,
limit_type=limit_type,
workspace=workspace,
project=project,
strategy_name=strategy_name,
)
if current_value is None:
return None
current_value = max(current_value - 1, 0)
set_current_strategy_limit_usage(
current_value=current_value,
cache=cache,
limit_type=limit_type,
workspace=workspace,
project=project,
strategy_name=strategy_name,
)
def get_current_strategy_limit_usage(
cache: BaseCache,
workspace: str,
project: str,
strategy_name: str,
limit_type: StrategyLimitType,
) -> Optional[int]:
usage_key = generate_cache_key_for_active_learning_usage(
limit_type=limit_type,
workspace=workspace,
project=project,
strategy_name=strategy_name,
)
value = cache.get(usage_key)
if value is None:
return value
return value[USAGE_KEY]
def set_current_strategy_limit_usage(
current_value: int,
cache: BaseCache,
workspace: str,
project: str,
strategy_name: str,
limit_type: StrategyLimitType,
) -> None:
usage_key = generate_cache_key_for_active_learning_usage(
limit_type=limit_type,
workspace=workspace,
project=project,
strategy_name=strategy_name,
)
expire = LIMIT_TYPE2KEY_EXPIRATION[limit_type]
cache.set(key=usage_key, value={USAGE_KEY: current_value}, expire=expire) # type: ignore
def generate_cache_key_for_active_learning_usage_lock(
workspace: str,
project: str,
) -> str:
return f"active_learning:usage:{workspace}:{project}:usage:lock"
def generate_cache_key_for_active_learning_usage(
limit_type: StrategyLimitType,
workspace: str,
project: str,
strategy_name: str,
) -> str:
time_infix = LIMIT_TYPE2KEY_INFIX_GENERATOR[limit_type]()
return f"active_learning:usage:{workspace}:{project}:{strategy_name}:{time_infix}"