Spaces:
Runtime error
Runtime error
from typing import List, Tuple | |
import numpy as np | |
from inference.core.models.instance_segmentation_base import ( | |
InstanceSegmentationBaseOnnxRoboflowInferenceModel, | |
) | |
class YOLOv8InstanceSegmentation(InstanceSegmentationBaseOnnxRoboflowInferenceModel): | |
"""YOLOv8 Instance Segmentation ONNX Inference Model. | |
This class is responsible for performing instance segmentation using the YOLOv8 model | |
with ONNX runtime. | |
Attributes: | |
weights_file (str): Path to the ONNX weights file. | |
Methods: | |
predict: Performs inference on the given image using the ONNX session. | |
""" | |
def weights_file(self) -> str: | |
"""Gets the weights file for the YOLOv8 model. | |
Returns: | |
str: Path to the ONNX weights file. | |
""" | |
return "weights.onnx" | |
def predict(self, img_in: np.ndarray, **kwargs) -> Tuple[np.ndarray, np.ndarray]: | |
"""Performs inference on the given image using the ONNX session. | |
Args: | |
img_in (np.ndarray): Input image as a NumPy array. | |
Returns: | |
Tuple[np.ndarray, np.ndarray]: Tuple containing two NumPy arrays representing the predictions and protos. The predictions include boxes, confidence scores, class confidence scores, and masks. | |
""" | |
predictions = self.onnx_session.run(None, {self.input_name: img_in}) | |
protos = predictions[1] | |
predictions = predictions[0] | |
predictions = predictions.transpose(0, 2, 1) | |
boxes = predictions[:, :, :4] | |
class_confs = predictions[:, :, 4:-32] | |
confs = np.expand_dims(np.max(class_confs, axis=2), axis=2) | |
masks = predictions[:, :, -32:] | |
predictions = np.concatenate([boxes, confs, class_confs, masks], axis=2) | |
return predictions, protos | |