OMG / inference /core /utils /postprocess.py
Fucius's picture
Upload 422 files
df6c67d verified
raw
history blame
21.5 kB
from copy import deepcopy
from typing import Dict, List, Tuple, Union
import cv2
import numpy as np
from inference.core.exceptions import PostProcessingError
from inference.core.utils.preprocess import (
STATIC_CROP_KEY,
static_crop_should_be_applied,
)
def cosine_similarity(a: np.ndarray, b: np.ndarray) -> Union[np.number, np.ndarray]:
"""
Compute the cosine similarity between two vectors.
Args:
a (np.ndarray): Vector A.
b (np.ndarray): Vector B.
Returns:
float: Cosine similarity between vectors A and B.
"""
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
def masks2poly(masks: np.ndarray) -> List[np.ndarray]:
"""Converts binary masks to polygonal segments.
Args:
masks (numpy.ndarray): A set of binary masks, where masks are multiplied by 255 and converted to uint8 type.
Returns:
list: A list of segments, where each segment is obtained by converting the corresponding mask.
"""
segments = []
masks = (masks * 255.0).astype(np.uint8)
for mask in masks:
segments.append(mask2poly(mask))
return segments
def mask2poly(mask: np.ndarray) -> np.ndarray:
"""
Find contours in the mask and return them as a float32 array.
Args:
mask (np.ndarray): A binary mask.
Returns:
np.ndarray: Contours represented as a float32 array.
"""
contours = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
if contours:
contours = np.array(
contours[np.array([len(x) for x in contours]).argmax()]
).reshape(-1, 2)
else:
contours = np.zeros((0, 2))
return contours.astype("float32")
def post_process_bboxes(
predictions: List[List[List[float]]],
infer_shape: Tuple[int, int],
img_dims: List[Tuple[int, int]],
preproc: dict,
disable_preproc_static_crop: bool = False,
resize_method: str = "Stretch to",
) -> List[List[List[float]]]:
"""
Postprocesses each patch of detections by scaling them to the original image coordinates and by shifting them based on a static crop preproc (if applied).
Args:
predictions (List[List[List[float]]]): The predictions output from NMS, indices are: batch x prediction x [x1, y1, x2, y2, ...].
infer_shape (Tuple[int, int]): The shape of the inference image.
img_dims (List[Tuple[int, int]]): The dimensions of the original image for each batch, indices are: batch x [height, width].
preproc (dict): Preprocessing configuration dictionary.
disable_preproc_static_crop (bool, optional): If true, the static crop preprocessing step is disabled for this call. Default is False.
resize_method (str, optional): Resize method for image. Defaults to "Stretch to".
Returns:
List[List[List[float]]]: The scaled and shifted predictions, indices are: batch x prediction x [x1, y1, x2, y2, ...].
"""
# Get static crop params
scaled_predictions = []
# Loop through batches
for i, batch_predictions in enumerate(predictions):
if len(batch_predictions) == 0:
scaled_predictions.append([])
continue
np_batch_predictions = np.array(batch_predictions)
# Get bboxes from predictions (x1,y1,x2,y2)
predicted_bboxes = np_batch_predictions[:, :4]
(crop_shift_x, crop_shift_y), origin_shape = get_static_crop_dimensions(
img_dims[i],
preproc,
disable_preproc_static_crop=disable_preproc_static_crop,
)
if resize_method == "Stretch to":
predicted_bboxes = stretch_bboxes(
predicted_bboxes=predicted_bboxes,
infer_shape=infer_shape,
origin_shape=origin_shape,
)
elif (
resize_method == "Fit (black edges) in"
or resize_method == "Fit (white edges) in"
):
predicted_bboxes = undo_image_padding_for_predicted_boxes(
predicted_bboxes=predicted_bboxes,
infer_shape=infer_shape,
origin_shape=origin_shape,
)
predicted_bboxes = clip_boxes_coordinates(
predicted_bboxes=predicted_bboxes,
origin_shape=origin_shape,
)
predicted_bboxes = shift_bboxes(
bboxes=predicted_bboxes,
shift_x=crop_shift_x,
shift_y=crop_shift_y,
)
np_batch_predictions[:, :4] = predicted_bboxes
scaled_predictions.append(np_batch_predictions.tolist())
return scaled_predictions
def stretch_bboxes(
predicted_bboxes: np.ndarray,
infer_shape: Tuple[int, int],
origin_shape: Tuple[int, int],
) -> np.ndarray:
scale_height = origin_shape[0] / infer_shape[0]
scale_width = origin_shape[1] / infer_shape[1]
return scale_bboxes(
bboxes=predicted_bboxes,
scale_x=scale_width,
scale_y=scale_height,
)
def undo_image_padding_for_predicted_boxes(
predicted_bboxes: np.ndarray,
infer_shape: Tuple[int, int],
origin_shape: Tuple[int, int],
) -> np.ndarray:
scale = min(infer_shape[0] / origin_shape[0], infer_shape[1] / origin_shape[1])
inter_h = round(origin_shape[0] * scale)
inter_w = round(origin_shape[1] * scale)
pad_x = (infer_shape[0] - inter_w) / 2
pad_y = (infer_shape[1] - inter_h) / 2
predicted_bboxes = shift_bboxes(
bboxes=predicted_bboxes, shift_x=-pad_x, shift_y=-pad_y
)
predicted_bboxes /= scale
return predicted_bboxes
def clip_boxes_coordinates(
predicted_bboxes: np.ndarray,
origin_shape: Tuple[int, int],
) -> np.ndarray:
predicted_bboxes[:, 0] = np.round(
np.clip(predicted_bboxes[:, 0], a_min=0, a_max=origin_shape[1])
)
predicted_bboxes[:, 2] = np.round(
np.clip(predicted_bboxes[:, 2], a_min=0, a_max=origin_shape[1])
)
predicted_bboxes[:, 1] = np.round(
np.clip(predicted_bboxes[:, 1], a_min=0, a_max=origin_shape[0])
)
predicted_bboxes[:, 3] = np.round(
np.clip(predicted_bboxes[:, 3], a_min=0, a_max=origin_shape[0])
)
return predicted_bboxes
def shift_bboxes(
bboxes: np.ndarray,
shift_x: Union[int, float],
shift_y: Union[int, float],
) -> np.ndarray:
bboxes[:, 0] += shift_x
bboxes[:, 2] += shift_x
bboxes[:, 1] += shift_y
bboxes[:, 3] += shift_y
return bboxes
def process_mask_accurate(
protos: np.ndarray,
masks_in: np.ndarray,
bboxes: np.ndarray,
shape: Tuple[int, int],
) -> np.ndarray:
"""Returns masks that are the size of the original image.
Args:
protos (numpy.ndarray): Prototype masks.
masks_in (numpy.ndarray): Input masks.
bboxes (numpy.ndarray): Bounding boxes.
shape (tuple): Target shape.
Returns:
numpy.ndarray: Processed masks.
"""
masks = preprocess_segmentation_masks(
protos=protos,
masks_in=masks_in,
shape=shape,
)
# Order = 1 -> bilinear
if len(masks.shape) == 2:
masks = np.expand_dims(masks, axis=0)
masks = masks.transpose((1, 2, 0))
masks = cv2.resize(masks, (shape[1], shape[0]), cv2.INTER_LINEAR)
if len(masks.shape) == 2:
masks = np.expand_dims(masks, axis=2)
masks = masks.transpose((2, 0, 1))
masks = crop_mask(masks, bboxes)
masks[masks < 0.5] = 0
return masks
def process_mask_tradeoff(
protos: np.ndarray,
masks_in: np.ndarray,
bboxes: np.ndarray,
shape: Tuple[int, int],
tradeoff_factor: float,
) -> np.ndarray:
"""Returns masks that are the size of the original image with a tradeoff factor applied.
Args:
protos (numpy.ndarray): Prototype masks.
masks_in (numpy.ndarray): Input masks.
bboxes (numpy.ndarray): Bounding boxes.
shape (tuple): Target shape.
tradeoff_factor (float): Tradeoff factor for resizing masks.
Returns:
numpy.ndarray: Processed masks.
"""
c, mh, mw = protos.shape # CHW
masks = preprocess_segmentation_masks(
protos=protos,
masks_in=masks_in,
shape=shape,
)
# Order = 1 -> bilinear
if len(masks.shape) == 2:
masks = np.expand_dims(masks, axis=0)
masks = masks.transpose((1, 2, 0))
ih, iw = shape
h = int(mh * (1 - tradeoff_factor) + ih * tradeoff_factor)
w = int(mw * (1 - tradeoff_factor) + iw * tradeoff_factor)
size = (h, w)
if tradeoff_factor != 0:
masks = cv2.resize(masks, size, cv2.INTER_LINEAR)
if len(masks.shape) == 2:
masks = np.expand_dims(masks, axis=2)
masks = masks.transpose((2, 0, 1))
c, mh, mw = masks.shape
down_sampled_boxes = scale_bboxes(
bboxes=deepcopy(bboxes),
scale_x=mw / iw,
scale_y=mh / ih,
)
masks = crop_mask(masks, down_sampled_boxes)
masks[masks < 0.5] = 0
return masks
def process_mask_fast(
protos: np.ndarray,
masks_in: np.ndarray,
bboxes: np.ndarray,
shape: Tuple[int, int],
) -> np.ndarray:
"""Returns masks in their original size.
Args:
protos (numpy.ndarray): Prototype masks.
masks_in (numpy.ndarray): Input masks.
bboxes (numpy.ndarray): Bounding boxes.
shape (tuple): Target shape.
Returns:
numpy.ndarray: Processed masks.
"""
ih, iw = shape
c, mh, mw = protos.shape # CHW
masks = preprocess_segmentation_masks(
protos=protos,
masks_in=masks_in,
shape=shape,
)
down_sampled_boxes = scale_bboxes(
bboxes=deepcopy(bboxes),
scale_x=mw / iw,
scale_y=mh / ih,
)
masks = crop_mask(masks, down_sampled_boxes)
masks[masks < 0.5] = 0
return masks
def preprocess_segmentation_masks(
protos: np.ndarray,
masks_in: np.ndarray,
shape: Tuple[int, int],
) -> np.ndarray:
c, mh, mw = protos.shape # CHW
masks = protos.astype(np.float32)
masks = masks.reshape((c, -1))
masks = masks_in @ masks
masks = sigmoid(masks)
masks = masks.reshape((-1, mh, mw))
gain = min(mh / shape[0], mw / shape[1]) # gain = old / new
pad = (mw - shape[1] * gain) / 2, (mh - shape[0] * gain) / 2 # wh padding
top, left = int(pad[1]), int(pad[0]) # y, x
bottom, right = int(mh - pad[1]), int(mw - pad[0])
return masks[:, top:bottom, left:right]
def scale_bboxes(bboxes: np.ndarray, scale_x: float, scale_y: float) -> np.ndarray:
bboxes[:, 0] *= scale_x
bboxes[:, 2] *= scale_x
bboxes[:, 1] *= scale_y
bboxes[:, 3] *= scale_y
return bboxes
def crop_mask(masks: np.ndarray, boxes: np.ndarray) -> np.ndarray:
"""
"Crop" predicted masks by zeroing out everything not in the predicted bbox.
Vectorized by Chong (thanks Chong).
Args:
- masks should be a size [h, w, n] tensor of masks
- boxes should be a size [n, 4] tensor of bbox coords in relative point form
"""
n, h, w = masks.shape
x1, y1, x2, y2 = np.split(boxes[:, :, None], 4, 1) # x1 shape(1,1,n)
r = np.arange(w, dtype=x1.dtype)[None, None, :] # rows shape(1,w,1)
c = np.arange(h, dtype=x1.dtype)[None, :, None] # cols shape(h,1,1)
masks = masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))
return masks
def post_process_polygons(
origin_shape: Tuple[int, int],
polys: List[List[Tuple[float, float]]],
infer_shape: Tuple[int, int],
preproc: dict,
resize_method: str = "Stretch to",
) -> List[List[Tuple[float, float]]]:
"""Scales and shifts polygons based on the given image shapes and preprocessing method.
This function performs polygon scaling and shifting based on the specified resizing method and
pre-processing steps. The polygons are transformed according to the ratio and padding between two images.
Args:
origin_shape (tuple of int): Shape of the source image (height, width).
infer_shape (tuple of int): Shape of the target image (height, width).
polys (list of list of tuple): List of polygons, where each polygon is represented by a list of (x, y) coordinates.
preproc (object): Preprocessing details used for generating the transformation.
resize_method (str, optional): Resizing method, either "Stretch to", "Fit (black edges) in", or "Fit (white edges) in". Defaults to "Stretch to".
Returns:
list of list of tuple: A list of shifted and scaled polygons.
"""
(crop_shift_x, crop_shift_y), origin_shape = get_static_crop_dimensions(
origin_shape, preproc
)
new_polys = []
if resize_method == "Stretch to":
width_ratio = origin_shape[1] / infer_shape[1]
height_ratio = origin_shape[0] / infer_shape[0]
new_polys = scale_polygons(
polygons=polys,
x_scale=width_ratio,
y_scale=height_ratio,
)
elif resize_method in {"Fit (black edges) in", "Fit (white edges) in"}:
new_polys = undo_image_padding_for_predicted_polygons(
polygons=polys,
infer_shape=infer_shape,
origin_shape=origin_shape,
)
shifted_polys = []
for poly in new_polys:
poly = [(p[0] + crop_shift_x, p[1] + crop_shift_y) for p in poly]
shifted_polys.append(poly)
return shifted_polys
def scale_polygons(
polygons: List[List[Tuple[float, float]]],
x_scale: float,
y_scale: float,
) -> List[List[Tuple[float, float]]]:
result = []
for poly in polygons:
poly = [(p[0] * x_scale, p[1] * y_scale) for p in poly]
result.append(poly)
return result
def undo_image_padding_for_predicted_polygons(
polygons: List[List[Tuple[float, float]]],
origin_shape: Tuple[int, int],
infer_shape: Tuple[int, int],
) -> List[List[Tuple[float, float]]]:
scale = min(infer_shape[0] / origin_shape[0], infer_shape[1] / origin_shape[1])
inter_w = int(origin_shape[1] * scale)
inter_h = int(origin_shape[0] * scale)
pad_x = (infer_shape[1] - inter_w) / 2
pad_y = (infer_shape[0] - inter_h) / 2
result = []
for poly in polygons:
poly = [((p[0] - pad_x) / scale, (p[1] - pad_y) / scale) for p in poly]
result.append(poly)
return result
def get_static_crop_dimensions(
orig_shape: Tuple[int, int],
preproc: dict,
disable_preproc_static_crop: bool = False,
) -> Tuple[Tuple[int, int], Tuple[int, int]]:
"""
Generates a transformation based on preprocessing configuration.
Args:
orig_shape (tuple): The original shape of the object (e.g., image) - (height, width).
preproc (dict): Preprocessing configuration dictionary, containing information such as static cropping.
disable_preproc_static_crop (bool, optional): If true, the static crop preprocessing step is disabled for this call. Default is False.
Returns:
tuple: A tuple containing the shift in the x and y directions, and the updated original shape after cropping.
"""
try:
if static_crop_should_be_applied(
preprocessing_config=preproc,
disable_preproc_static_crop=disable_preproc_static_crop,
):
x_min, y_min, x_max, y_max = standardise_static_crop(
static_crop_config=preproc[STATIC_CROP_KEY]
)
else:
x_min, y_min, x_max, y_max = 0, 0, 1, 1
crop_shift_x, crop_shift_y = (
round(x_min * orig_shape[1]),
round(y_min * orig_shape[0]),
)
cropped_percent_x = x_max - x_min
cropped_percent_y = y_max - y_min
orig_shape = (
round(orig_shape[0] * cropped_percent_y),
round(orig_shape[1] * cropped_percent_x),
)
return (crop_shift_x, crop_shift_y), orig_shape
except KeyError as error:
raise PostProcessingError(
f"Could not find a proper configuration key {error} in post-processing."
)
def standardise_static_crop(
static_crop_config: Dict[str, int]
) -> Tuple[float, float, float, float]:
return tuple(static_crop_config[key] / 100 for key in ["x_min", "y_min", "x_max", "y_max"]) # type: ignore
def post_process_keypoints(
predictions: List[List[List[float]]],
keypoints_start_index: int,
infer_shape: Tuple[int, int],
img_dims: List[Tuple[int, int]],
preproc: dict,
disable_preproc_static_crop: bool = False,
resize_method: str = "Stretch to",
) -> List[List[List[float]]]:
"""Scales and shifts keypoints based on the given image shapes and preprocessing method.
This function performs polygon scaling and shifting based on the specified resizing method and
pre-processing steps. The polygons are transformed according to the ratio and padding between two images.
Args:
predictions: predictions from model
keypoints_start_index: offset in the 3rd dimension pointing where in the prediction start keypoints [(x, y, cfg), ...] for each keypoint class
img_dims list of (tuple of int): Shape of the source image (height, width).
infer_shape (tuple of int): Shape of the target image (height, width).
preproc (object): Preprocessing details used for generating the transformation.
resize_method (str, optional): Resizing method, either "Stretch to", "Fit (black edges) in", or "Fit (white edges) in". Defaults to "Stretch to".
disable_preproc_static_crop: flag to disable static crop
Returns:
list of list of list: predictions with post-processed keypoints
"""
# Get static crop params
scaled_predictions = []
# Loop through batches
for i, batch_predictions in enumerate(predictions):
if len(batch_predictions) == 0:
scaled_predictions.append([])
continue
np_batch_predictions = np.array(batch_predictions)
keypoints = np_batch_predictions[:, keypoints_start_index:]
(crop_shift_x, crop_shift_y), origin_shape = get_static_crop_dimensions(
img_dims[i],
preproc,
disable_preproc_static_crop=disable_preproc_static_crop,
)
if resize_method == "Stretch to":
keypoints = stretch_keypoints(
keypoints=keypoints,
infer_shape=infer_shape,
origin_shape=origin_shape,
)
elif (
resize_method == "Fit (black edges) in"
or resize_method == "Fit (white edges) in"
):
keypoints = undo_image_padding_for_predicted_keypoints(
keypoints=keypoints,
infer_shape=infer_shape,
origin_shape=origin_shape,
)
keypoints = clip_keypoints_coordinates(
keypoints=keypoints, origin_shape=origin_shape
)
keypoints = shift_keypoints(
keypoints=keypoints, shift_x=crop_shift_x, shift_y=crop_shift_y
)
np_batch_predictions[:, keypoints_start_index:] = keypoints
scaled_predictions.append(np_batch_predictions.tolist())
return scaled_predictions
def stretch_keypoints(
keypoints: np.ndarray,
infer_shape: Tuple[int, int],
origin_shape: Tuple[int, int],
) -> np.ndarray:
scale_width = origin_shape[1] / infer_shape[1]
scale_height = origin_shape[0] / infer_shape[0]
for keypoint_id in range(keypoints.shape[1] // 3):
keypoints[:, keypoint_id * 3] *= scale_width
keypoints[:, keypoint_id * 3 + 1] *= scale_height
return keypoints
def undo_image_padding_for_predicted_keypoints(
keypoints: np.ndarray,
infer_shape: Tuple[int, int],
origin_shape: Tuple[int, int],
) -> np.ndarray:
# Undo scaling and padding from letterbox resize preproc operation
scale = min(infer_shape[0] / origin_shape[0], infer_shape[1] / origin_shape[1])
inter_w = int(origin_shape[1] * scale)
inter_h = int(origin_shape[0] * scale)
pad_x = (infer_shape[1] - inter_w) / 2
pad_y = (infer_shape[0] - inter_h) / 2
for coord_id in range(keypoints.shape[1] // 3):
keypoints[:, coord_id * 3] -= pad_x
keypoints[:, coord_id * 3] /= scale
keypoints[:, coord_id * 3 + 1] -= pad_y
keypoints[:, coord_id * 3 + 1] /= scale
return keypoints
def clip_keypoints_coordinates(
keypoints: np.ndarray,
origin_shape: Tuple[int, int],
) -> np.ndarray:
for keypoint_id in range(keypoints.shape[1] // 3):
keypoints[:, keypoint_id * 3] = np.round(
np.clip(keypoints[:, keypoint_id * 3], a_min=0, a_max=origin_shape[1])
)
keypoints[:, keypoint_id * 3 + 1] = np.round(
np.clip(keypoints[:, keypoint_id * 3 + 1], a_min=0, a_max=origin_shape[0])
)
return keypoints
def shift_keypoints(
keypoints: np.ndarray,
shift_x: Union[int, float],
shift_y: Union[int, float],
) -> np.ndarray:
for keypoint_id in range(keypoints.shape[1] // 3):
keypoints[:, keypoint_id * 3] += shift_x
keypoints[:, keypoint_id * 3 + 1] += shift_y
return keypoints
def sigmoid(x: Union[float, np.ndarray]) -> Union[float, np.number, np.ndarray]:
"""Computes the sigmoid function for the given input.
The sigmoid function is defined as:
f(x) = 1 / (1 + exp(-x))
Args:
x (float or numpy.ndarray): Input value or array for which the sigmoid function is to be computed.
Returns:
float or numpy.ndarray: The computed sigmoid value(s).
"""
return 1 / (1 + np.exp(-x))