Spaces:
Configuration error
Configuration error
| import json | |
| from typing import List, Tuple | |
| from inference.core.active_learning.entities import ( | |
| Prediction, | |
| PredictionFileType, | |
| PredictionType, | |
| SerialisedPrediction, | |
| ) | |
| from inference.core.constants import ( | |
| CLASSIFICATION_TASK, | |
| INSTANCE_SEGMENTATION_TASK, | |
| OBJECT_DETECTION_TASK, | |
| ) | |
| from inference.core.exceptions import PredictionFormatNotSupported | |
| def adjust_prediction_to_client_scaling_factor( | |
| prediction: dict, scaling_factor: float, prediction_type: PredictionType | |
| ) -> dict: | |
| if abs(scaling_factor - 1.0) < 1e-5: | |
| return prediction | |
| if "image" in prediction: | |
| prediction["image"] = { | |
| "width": round(prediction["image"]["width"] / scaling_factor), | |
| "height": round(prediction["image"]["height"] / scaling_factor), | |
| } | |
| if predictions_should_not_be_post_processed( | |
| prediction=prediction, prediction_type=prediction_type | |
| ): | |
| return prediction | |
| if prediction_type == INSTANCE_SEGMENTATION_TASK: | |
| prediction["predictions"] = ( | |
| adjust_prediction_with_bbox_and_points_to_client_scaling_factor( | |
| predictions=prediction["predictions"], | |
| scaling_factor=scaling_factor, | |
| points_key="points", | |
| ) | |
| ) | |
| if prediction_type == OBJECT_DETECTION_TASK: | |
| prediction["predictions"] = ( | |
| adjust_object_detection_predictions_to_client_scaling_factor( | |
| predictions=prediction["predictions"], | |
| scaling_factor=scaling_factor, | |
| ) | |
| ) | |
| return prediction | |
| def predictions_should_not_be_post_processed( | |
| prediction: dict, prediction_type: PredictionType | |
| ) -> bool: | |
| # excluding from post-processing classification output, stub-output and empty predictions | |
| return ( | |
| "is_stub" in prediction | |
| or "predictions" not in prediction | |
| or CLASSIFICATION_TASK in prediction_type | |
| or len(prediction["predictions"]) == 0 | |
| ) | |
| def adjust_object_detection_predictions_to_client_scaling_factor( | |
| predictions: List[dict], | |
| scaling_factor: float, | |
| ) -> List[dict]: | |
| result = [] | |
| for prediction in predictions: | |
| prediction = adjust_bbox_coordinates_to_client_scaling_factor( | |
| bbox=prediction, | |
| scaling_factor=scaling_factor, | |
| ) | |
| result.append(prediction) | |
| return result | |
| def adjust_prediction_with_bbox_and_points_to_client_scaling_factor( | |
| predictions: List[dict], | |
| scaling_factor: float, | |
| points_key: str, | |
| ) -> List[dict]: | |
| result = [] | |
| for prediction in predictions: | |
| prediction = adjust_bbox_coordinates_to_client_scaling_factor( | |
| bbox=prediction, | |
| scaling_factor=scaling_factor, | |
| ) | |
| prediction[points_key] = adjust_points_coordinates_to_client_scaling_factor( | |
| points=prediction[points_key], | |
| scaling_factor=scaling_factor, | |
| ) | |
| result.append(prediction) | |
| return result | |
| def adjust_bbox_coordinates_to_client_scaling_factor( | |
| bbox: dict, | |
| scaling_factor: float, | |
| ) -> dict: | |
| bbox["x"] = bbox["x"] / scaling_factor | |
| bbox["y"] = bbox["y"] / scaling_factor | |
| bbox["width"] = bbox["width"] / scaling_factor | |
| bbox["height"] = bbox["height"] / scaling_factor | |
| return bbox | |
| def adjust_points_coordinates_to_client_scaling_factor( | |
| points: List[dict], | |
| scaling_factor: float, | |
| ) -> List[dict]: | |
| result = [] | |
| for point in points: | |
| point["x"] = point["x"] / scaling_factor | |
| point["y"] = point["y"] / scaling_factor | |
| result.append(point) | |
| return result | |
| def encode_prediction( | |
| prediction: Prediction, | |
| prediction_type: PredictionType, | |
| ) -> Tuple[SerialisedPrediction, PredictionFileType]: | |
| if CLASSIFICATION_TASK not in prediction_type: | |
| return json.dumps(prediction), "json" | |
| if "top" in prediction: | |
| return prediction["top"], "txt" | |
| raise PredictionFormatNotSupported( | |
| f"Prediction type or prediction format not supported." | |
| ) | |