Fucius's picture
Upload 422 files
df6c67d verified
raw
history blame
14.2 kB
import json
import socket
from datetime import datetime
from functools import partial
from typing import Callable, List, Optional, Tuple
import cv2
import numpy as np
import supervision as sv
from inference.core import logger
from inference.core.active_learning.middlewares import ActiveLearningMiddleware
from inference.core.interfaces.camera.entities import VideoFrame
from inference.core.utils.preprocess import letterbox_image
DEFAULT_ANNOTATOR = sv.BoxAnnotator()
DEFAULT_FPS_MONITOR = sv.FPSMonitor()
def display_image(image: np.ndarray) -> None:
cv2.imshow("Predictions", image)
cv2.waitKey(1)
def render_boxes(
predictions: dict,
video_frame: VideoFrame,
annotator: sv.BoxAnnotator = DEFAULT_ANNOTATOR,
display_size: Optional[Tuple[int, int]] = (1280, 720),
fps_monitor: Optional[sv.FPSMonitor] = DEFAULT_FPS_MONITOR,
display_statistics: bool = False,
on_frame_rendered: Callable[[np.ndarray], None] = display_image,
) -> None:
"""
Helper tool to render object detection predictions on top of video frame. It is designed
to be used with `InferencePipeline`, as sink for predictions. By default, it uses standard `sv.BoxAnnotator()`
to draw bounding boxes and resizes prediction to 1280x720 (keeping aspect ratio and adding black padding).
One may configure default behaviour, for instance to display latency and throughput statistics.
This sink is only partially compatible with stubs and classification models (it will not fail,
although predictions will not be displayed).
Args:
predictions (dict): Roboflow object detection predictions with Bounding Boxes
video_frame (VideoFrame): frame of video with its basic metadata emitted by `VideoSource`
annotator (sv.BoxAnnotator): Annotator used to draw Bounding Boxes - if custom object is not passed,
default is used.
display_size (Tuple[int, int]): tuple in format (width, height) to resize visualisation output
fps_monitor (Optional[sv.FPSMonitor]): FPS monitor used to monitor throughput
display_statistics (bool): Flag to decide if throughput and latency can be displayed in the result image,
if enabled, throughput will only be presented if `fps_monitor` is not None
on_frame_rendered (Callable[[np.ndarray], None]): callback to be called once frame is rendered - by default,
function will display OpenCV window.
Returns: None
Side effects: on_frame_rendered() is called against the np.ndarray produced from video frame
and predictions.
Example:
```python
from functools import partial
import cv2
from inference import InferencePipeline
from inference.core.interfaces.stream.sinks import render_boxes
output_size = (640, 480)
video_sink = cv2.VideoWriter("output.avi", cv2.VideoWriter_fourcc(*"MJPG"), 25.0, output_size)
on_prediction = partial(render_boxes, display_size=output_size, on_frame_rendered=video_sink.write)
pipeline = InferencePipeline.init(
model_id="your-model/3",
video_reference="./some_file.mp4",
on_prediction=on_prediction,
)
pipeline.start()
pipeline.join()
video_sink.release()
```
In this example, `render_boxes()` is used as a sink for `InferencePipeline` predictions - making frames with
predictions displayed to be saved into video file.
"""
fps_value = None
if fps_monitor is not None:
fps_monitor.tick()
fps_value = fps_monitor()
try:
labels = [p["class"] for p in predictions["predictions"]]
detections = sv.Detections.from_roboflow(predictions)
image = annotator.annotate(
scene=video_frame.image.copy(), detections=detections, labels=labels
)
except (TypeError, KeyError):
logger.warning(
f"Used `render_boxes(...)` sink, but predictions that were provided do not match the expected format "
f"of object detection prediction that could be accepted by `supervision.Detection.from_roboflow(...)"
)
image = video_frame.image.copy()
if display_size is not None:
image = letterbox_image(image, desired_size=display_size)
if display_statistics:
image = render_statistics(
image=image, frame_timestamp=video_frame.frame_timestamp, fps=fps_value
)
on_frame_rendered(image)
def render_statistics(
image: np.ndarray, frame_timestamp: datetime, fps: Optional[float]
) -> np.ndarray:
latency = round((datetime.now() - frame_timestamp).total_seconds() * 1000, 2)
image_height = image.shape[0]
image = cv2.putText(
image,
f"LATENCY: {latency} ms",
(10, image_height - 10),
cv2.FONT_HERSHEY_SIMPLEX,
0.8,
(0, 255, 0),
2,
)
if fps is not None:
fps = round(fps, 2)
image = cv2.putText(
image,
f"THROUGHPUT: {fps}",
(10, image_height - 50),
cv2.FONT_HERSHEY_SIMPLEX,
0.8,
(0, 255, 0),
2,
)
return image
class UDPSink:
@classmethod
def init(cls, ip_address: str, port: int) -> "UDPSink":
"""
Creates `InferencePipeline` predictions sink capable of sending model predictions over network
using UDP socket.
As an `inference` user, please use .init() method instead of constructor to instantiate objects.
Args:
ip_address (str): IP address to send predictions
port (int): Port to send predictions
Returns: Initialised object of `UDPSink` class.
"""
udp_socket = socket.socket(family=socket.AF_INET, type=socket.SOCK_DGRAM)
udp_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
udp_socket.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1)
udp_socket.setsockopt(socket.SOL_SOCKET, socket.SO_RCVBUF, 1)
udp_socket.setsockopt(socket.SOL_SOCKET, socket.SO_SNDBUF, 65536)
return cls(
ip_address=ip_address,
port=port,
udp_socket=udp_socket,
)
def __init__(self, ip_address: str, port: int, udp_socket: socket.socket):
self._ip_address = ip_address
self._port = port
self._socket = udp_socket
def send_predictions(
self,
predictions: dict,
video_frame: VideoFrame,
) -> None:
"""
Method to send predictions via UDP socket. Useful in combination with `InferencePipeline` as
a sink for predictions.
Args:
predictions (dict): Roboflow object detection predictions with Bounding Boxes
video_frame (VideoFrame): frame of video with its basic metadata emitted by `VideoSource`
Returns: None
Side effects: Sends serialised `predictions` and `video_frame` metadata via the UDP socket as
JSON string. It adds key named "inference_metadata" into `predictions` dict (mutating its
state). "inference_metadata" contain id of the frame, frame grabbing timestamp and message
emission time in datetime iso format.
Example:
```python
import cv2
from inference.core.interfaces.stream.inference_pipeline import InferencePipeline
from inference.core.interfaces.stream.sinks import UDPSink
udp_sink = UDPSink.init(ip_address="127.0.0.1", port=9090)
pipeline = InferencePipeline.init(
model_id="your-model/3",
video_reference="./some_file.mp4",
on_prediction=udp_sink.send_predictions,
)
pipeline.start()
pipeline.join()
```
`UDPSink` used in this way will emit predictions to receiver automatically.
"""
inference_metadata = {
"frame_id": video_frame.frame_id,
"frame_decoding_time": video_frame.frame_timestamp.isoformat(),
"emission_time": datetime.now().isoformat(),
}
predictions["inference_metadata"] = inference_metadata
serialised_predictions = json.dumps(predictions).encode("utf-8")
self._socket.sendto(
serialised_predictions,
(
self._ip_address,
self._port,
),
)
def multi_sink(
predictions: dict,
video_frame: VideoFrame,
sinks: List[Callable[[dict, VideoFrame], None]],
) -> None:
"""
Helper util useful to combine multiple sinks together, while using `InferencePipeline`.
Args:
video_frame (VideoFrame): frame of video with its basic metadata emitted by `VideoSource`
predictions (dict): Roboflow object detection predictions with Bounding Boxes
sinks (List[Callable[[VideoFrame, dict], None]]): list of sinks to be used. Each will be executed
one-by-one in the order pointed in input list, all errors will be caught and reported via logger,
without re-raising.
Returns: None
Side effects: Uses all sinks in context if (video_frame, predictions) input.
Example:
```python
from functools import partial
import cv2
from inference import InferencePipeline
from inference.core.interfaces.stream.sinks import UDPSink, render_boxes
udp_sink = UDPSink(ip_address="127.0.0.1", port=9090)
on_prediction = partial(multi_sink, sinks=[udp_sink.send_predictions, render_boxes])
pipeline = InferencePipeline.init(
model_id="your-model/3",
video_reference="./some_file.mp4",
on_prediction=on_prediction,
)
pipeline.start()
pipeline.join()
```
As a result, predictions will both be sent via UDP socket and displayed in the screen.
"""
for sink in sinks:
try:
sink(predictions, video_frame)
except Exception as error:
logger.error(
f"Could not sent prediction with frame_id={video_frame.frame_id} to sink "
f"due to error: {error}."
)
def active_learning_sink(
predictions: dict,
video_frame: VideoFrame,
active_learning_middleware: ActiveLearningMiddleware,
model_type: str,
disable_preproc_auto_orient: bool = False,
) -> None:
active_learning_middleware.register(
inference_input=video_frame.image,
prediction=predictions,
prediction_type=model_type,
disable_preproc_auto_orient=disable_preproc_auto_orient,
)
class VideoFileSink:
@classmethod
def init(
cls,
video_file_name: str,
annotator: sv.BoxAnnotator = DEFAULT_ANNOTATOR,
display_size: Optional[Tuple[int, int]] = (1280, 720),
fps_monitor: Optional[sv.FPSMonitor] = DEFAULT_FPS_MONITOR,
display_statistics: bool = False,
output_fps: int = 25,
quiet: bool = False,
) -> "VideoFileSink":
"""
Creates `InferencePipeline` predictions sink capable of saving model predictions into video file.
As an `inference` user, please use .init() method instead of constructor to instantiate objects.
Args:
video_file_name (str): name of the video file to save predictions
render_boxes (Callable[[dict, VideoFrame], None]): callable to render predictions on top of video frame
Attributes:
on_prediction (Callable[[dict, VideoFrame], None]): callable to be used as a sink for predictions
Returns: Initialized object of `VideoFileSink` class.
Example:
```python
import cv2
from inference import InferencePipeline
from inference.core.interfaces.stream.sinks import VideoFileSink
video_sink = VideoFileSink.init(video_file_name="output.avi")
pipeline = InferencePipeline.init(
model_id="your-model/3",
video_reference="./some_file.mp4",
on_prediction=video_sink.on_prediction,
)
pipeline.start()
pipeline.join()
video_sink.release()
```
`VideoFileSink` used in this way will save predictions to video file automatically.
"""
return cls(
video_file_name=video_file_name,
annotator=annotator,
display_size=display_size,
fps_monitor=fps_monitor,
display_statistics=display_statistics,
output_fps=output_fps,
quiet=quiet,
)
def __init__(
self,
video_file_name: str,
annotator: sv.BoxAnnotator,
display_size: Optional[Tuple[int, int]],
fps_monitor: Optional[sv.FPSMonitor],
display_statistics: bool,
output_fps: int,
quiet: bool,
):
self._video_file_name = video_file_name
self._annotator = annotator
self._display_size = display_size
self._fps_monitor = fps_monitor
self._display_statistics = display_statistics
self._output_fps = output_fps
self._quiet = quiet
self._frame_idx = 0
self._video_writer = cv2.VideoWriter(
self._video_file_name,
cv2.VideoWriter_fourcc(*"MJPG"),
self._output_fps,
self._display_size,
)
self.on_prediction = partial(
render_boxes,
annotator=self._annotator,
display_size=self._display_size,
fps_monitor=self._fps_monitor,
display_statistics=self._display_statistics,
on_frame_rendered=self._save_predictions,
)
def _save_predictions(
self,
frame: np.ndarray,
) -> None:
""" """
self._video_writer.write(frame)
if not self._quiet:
print(f"Writing frame {self._frame_idx}", end="\r")
self._frame_idx += 1
def release(self) -> None:
"""
Releases VideoWriter object.
"""
self._video_writer.release()