Spaces:
Configuration error
Configuration error
| # EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction | |
| # Han Cai, Junyan Li, Muyan Hu, Chuang Gan, Song Han | |
| # International Conference on Computer Vision (ICCV), 2023 | |
| import torch | |
| __all__ = ["REGISTERED_OPTIMIZER_DICT", "build_optimizer"] | |
| # register optimizer here | |
| # name: optimizer, kwargs with default values | |
| REGISTERED_OPTIMIZER_DICT: dict[str, tuple[type, dict[str, any]]] = { | |
| "sgd": (torch.optim.SGD, {"momentum": 0.9, "nesterov": True}), | |
| "adam": (torch.optim.Adam, {"betas": (0.9, 0.999), "eps": 1e-8, "amsgrad": False}), | |
| "adamw": ( | |
| torch.optim.AdamW, | |
| {"betas": (0.9, 0.999), "eps": 1e-8, "amsgrad": False}, | |
| ), | |
| } | |
| def build_optimizer( | |
| net_params, optimizer_name: str, optimizer_params: dict or None, init_lr: float | |
| ) -> torch.optim.Optimizer: | |
| optimizer_class, default_params = REGISTERED_OPTIMIZER_DICT[optimizer_name] | |
| optimizer_params = optimizer_params or {} | |
| for key in default_params: | |
| if key in optimizer_params: | |
| default_params[key] = optimizer_params[key] | |
| optimizer = optimizer_class(net_params, init_lr, **default_params) | |
| return optimizer | |