Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import uuid | |
from dotenv import load_dotenv | |
from inference.core.utils.environment import safe_split_value, str2bool | |
load_dotenv(os.getcwd() + "/.env") | |
# The project name, default is "roboflow-platform" | |
PROJECT = os.getenv("PROJECT", "roboflow-platform") | |
# Allow numpy input, default is True | |
ALLOW_NUMPY_INPUT = str2bool(os.getenv("ALLOW_NUMPY_INPUT", True)) | |
# List of allowed origins | |
ALLOW_ORIGINS = os.getenv("ALLOW_ORIGINS", "") | |
ALLOW_ORIGINS = ALLOW_ORIGINS.split(",") | |
# Base URL for the API | |
API_BASE_URL = os.getenv( | |
"API_BASE_URL", | |
( | |
"https://api.roboflow.com" | |
if PROJECT == "roboflow-platform" | |
else "https://api.roboflow.one" | |
), | |
) | |
# Debug flag for the API, default is False | |
API_DEBUG = os.getenv("API_DEBUG", False) | |
# API key, default is None | |
API_KEY_ENV_NAMES = ["ROBOFLOW_API_KEY", "API_KEY"] | |
API_KEY = os.getenv(API_KEY_ENV_NAMES[0], None) or os.getenv(API_KEY_ENV_NAMES[1], None) | |
# AWS access key ID, default is None | |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID", None) | |
# AWS secret access key, default is None | |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY", None) | |
COGVLM_LOAD_4BIT = str2bool(os.getenv("COGVLM_LOAD_4BIT", True)) | |
COGVLM_LOAD_8BIT = str2bool(os.getenv("COGVLM_LOAD_8BIT", False)) | |
COGVLM_VERSION_ID = os.getenv("COGVLM_VERSION_ID", "cogvlm-chat-hf") | |
# CLIP version ID, default is "ViT-B-16" | |
CLIP_VERSION_ID = os.getenv("CLIP_VERSION_ID", "ViT-B-16") | |
# CLIP model ID | |
CLIP_MODEL_ID = f"clip/{CLIP_VERSION_ID}" | |
# Gaze version ID, default is "L2CS" | |
GAZE_VERSION_ID = os.getenv("GAZE_VERSION_ID", "L2CS") | |
# Gaze model ID | |
GAZE_MODEL_ID = f"gaze/{CLIP_VERSION_ID}" | |
# Maximum batch size for GAZE, default is 8 | |
GAZE_MAX_BATCH_SIZE = int(os.getenv("GAZE_MAX_BATCH_SIZE", 8)) | |
# If true, this will store a non-verbose version of the inference request and repsonse in the cache | |
TINY_CACHE = str2bool(os.getenv("TINY_CACHE", True)) | |
# Maximum batch size for CLIP, default is 8 | |
CLIP_MAX_BATCH_SIZE = int(os.getenv("CLIP_MAX_BATCH_SIZE", 8)) | |
# Class agnostic NMS flag, default is False | |
CLASS_AGNOSTIC_NMS_ENV = "CLASS_AGNOSTIC_NMS" | |
DEFAULT_CLASS_AGNOSTIC_NMS = False | |
CLASS_AGNOSTIC_NMS = str2bool( | |
os.getenv(CLASS_AGNOSTIC_NMS_ENV, DEFAULT_CLASS_AGNOSTIC_NMS) | |
) | |
# Confidence threshold, default is 50% | |
CONFIDENCE_ENV = "CONFIDENCE" | |
DEFAULT_CONFIDENCE = 0.4 | |
CONFIDENCE = float(os.getenv(CONFIDENCE_ENV, DEFAULT_CONFIDENCE)) | |
# Flag to enable core models, default is True | |
CORE_MODELS_ENABLED = str2bool(os.getenv("CORE_MODELS_ENABLED", True)) | |
# Flag to enable CLIP core model, default is True | |
CORE_MODEL_CLIP_ENABLED = str2bool(os.getenv("CORE_MODEL_CLIP_ENABLED", True)) | |
# Flag to enable SAM core model, default is True | |
CORE_MODEL_SAM_ENABLED = str2bool(os.getenv("CORE_MODEL_SAM_ENABLED", True)) | |
# Flag to enable GAZE core model, default is True | |
CORE_MODEL_GAZE_ENABLED = str2bool(os.getenv("CORE_MODEL_GAZE_ENABLED", True)) | |
# Flag to enable DocTR core model, default is True | |
CORE_MODEL_DOCTR_ENABLED = str2bool(os.getenv("CORE_MODEL_DOCTR_ENABLED", True)) | |
# Flag to enable GROUNDINGDINO core model, default is True | |
CORE_MODEL_GROUNDINGDINO_ENABLED = str2bool( | |
os.getenv("CORE_MODEL_GROUNDINGDINO_ENABLED", True) | |
) | |
# Flag to enable CogVLM core model, default is True | |
CORE_MODEL_COGVLM_ENABLED = str2bool(os.getenv("CORE_MODEL_COGVLM_ENABLED", True)) | |
# Flag to enable YOLO-World core model, default is True | |
CORE_MODEL_YOLO_WORLD_ENABLED = str2bool( | |
os.getenv("CORE_MODEL_YOLO_WORLD_ENABLED", True) | |
) | |
# ID of host device, default is None | |
DEVICE_ID = os.getenv("DEVICE_ID", None) | |
# Flag to disable inference cache, default is False | |
DISABLE_INFERENCE_CACHE = str2bool(os.getenv("DISABLE_INFERENCE_CACHE", False)) | |
# Flag to disable auto-orientation preprocessing, default is False | |
DISABLE_PREPROC_AUTO_ORIENT = str2bool(os.getenv("DISABLE_PREPROC_AUTO_ORIENT", False)) | |
# Flag to disable contrast preprocessing, default is False | |
DISABLE_PREPROC_CONTRAST = str2bool(os.getenv("DISABLE_PREPROC_CONTRAST", False)) | |
# Flag to disable grayscale preprocessing, default is False | |
DISABLE_PREPROC_GRAYSCALE = str2bool(os.getenv("DISABLE_PREPROC_GRAYSCALE", False)) | |
# Flag to disable static crop preprocessing, default is False | |
DISABLE_PREPROC_STATIC_CROP = str2bool(os.getenv("DISABLE_PREPROC_STATIC_CROP", False)) | |
# Flag to disable version check, default is False | |
DISABLE_VERSION_CHECK = str2bool(os.getenv("DISABLE_VERSION_CHECK", False)) | |
# ElastiCache endpoint | |
ELASTICACHE_ENDPOINT = os.environ.get( | |
"ELASTICACHE_ENDPOINT", | |
( | |
"roboflow-infer-prod.ljzegl.cfg.use2.cache.amazonaws.com:11211" | |
if PROJECT == "roboflow-platform" | |
else "roboflow-infer.ljzegl.cfg.use2.cache.amazonaws.com:11211" | |
), | |
) | |
# Flag to enable byte track, default is False | |
ENABLE_BYTE_TRACK = str2bool(os.getenv("ENABLE_BYTE_TRACK", False)) | |
# Flag to enforce FPS, default is False | |
ENFORCE_FPS = str2bool(os.getenv("ENFORCE_FPS", False)) | |
MAX_FPS = os.getenv("MAX_FPS") | |
if MAX_FPS is not None: | |
MAX_FPS = int(MAX_FPS) | |
# Flag to fix batch size, default is False | |
FIX_BATCH_SIZE = str2bool(os.getenv("FIX_BATCH_SIZE", False)) | |
# Host, default is "0.0.0.0" | |
HOST = os.getenv("HOST", "0.0.0.0") | |
# IoU threshold, default is 0.3 | |
IOU_THRESHOLD_ENV = "IOU_THRESHOLD" | |
DEFAULT_IOU_THRESHOLD = 0.3 | |
IOU_THRESHOLD = float(os.getenv(IOU_THRESHOLD_ENV, DEFAULT_IOU_THRESHOLD)) | |
# IP broadcast address, default is "127.0.0.1" | |
IP_BROADCAST_ADDR = os.getenv("IP_BROADCAST_ADDR", "127.0.0.1") | |
# IP broadcast port, default is 37020 | |
IP_BROADCAST_PORT = int(os.getenv("IP_BROADCAST_PORT", 37020)) | |
# Flag to enable JSON response, default is True | |
JSON_RESPONSE = str2bool(os.getenv("JSON_RESPONSE", True)) | |
# Lambda flag, default is False | |
LAMBDA = str2bool(os.getenv("LAMBDA", False)) | |
# Flag to enable legacy route, default is True | |
LEGACY_ROUTE_ENABLED = str2bool(os.getenv("LEGACY_ROUTE_ENABLED", True)) | |
# License server, default is None | |
LICENSE_SERVER = os.getenv("LICENSE_SERVER", None) | |
# Log level, default is "INFO" | |
LOG_LEVEL = os.getenv("LOG_LEVEL", "WARNING") | |
# Maximum number of active models, default is 8 | |
MAX_ACTIVE_MODELS = int(os.getenv("MAX_ACTIVE_MODELS", 8)) | |
# Maximum batch size, default is infinite | |
MAX_BATCH_SIZE = os.getenv("MAX_BATCH_SIZE", None) | |
if MAX_BATCH_SIZE is not None: | |
MAX_BATCH_SIZE = int(MAX_BATCH_SIZE) | |
else: | |
MAX_BATCH_SIZE = float("inf") | |
# Maximum number of candidates, default is 3000 | |
MAX_CANDIDATES_ENV = "MAX_CANDIDATES" | |
DEFAULT_MAX_CANDIDATES = 3000 | |
MAX_CANDIDATES = int(os.getenv(MAX_CANDIDATES_ENV, DEFAULT_MAX_CANDIDATES)) | |
# Maximum number of detections, default is 300 | |
MAX_DETECTIONS_ENV = "MAX_DETECTIONS" | |
DEFAULT_MAX_DETECTIONS = 300 | |
MAX_DETECTIONS = int(os.getenv(MAX_DETECTIONS_ENV, DEFAULT_MAX_DETECTIONS)) | |
# Loop interval for expiration of memory cache, default is 5 | |
MEMORY_CACHE_EXPIRE_INTERVAL = int(os.getenv("MEMORY_CACHE_EXPIRE_INTERVAL", 5)) | |
# Metrics enabled flag, default is True | |
METRICS_ENABLED = str2bool(os.getenv("METRICS_ENABLED", True)) | |
if LAMBDA: | |
METRICS_ENABLED = False | |
# Interval for metrics aggregation, default is 60 | |
METRICS_INTERVAL = int(os.getenv("METRICS_INTERVAL", 60)) | |
# URL for posting metrics to Roboflow API, default is "{API_BASE_URL}/inference-stats" | |
METRICS_URL = os.getenv("METRICS_URL", f"{API_BASE_URL}/inference-stats") | |
# Model cache directory, default is "/tmp/cache" | |
MODEL_CACHE_DIR = os.getenv("MODEL_CACHE_DIR", "/tmp/cache") | |
# Model ID, default is None | |
MODEL_ID = os.getenv("MODEL_ID") | |
# Enable jupyter notebook server route, default is False | |
NOTEBOOK_ENABLED = str2bool(os.getenv("NOTEBOOK_ENABLED", False)) | |
# Jupyter notebook password, default is "roboflow" | |
NOTEBOOK_PASSWORD = os.getenv("NOTEBOOK_PASSWORD", "roboflow") | |
# Jupyter notebook port, default is 9002 | |
NOTEBOOK_PORT = int(os.getenv("NOTEBOOK_PORT", 9002)) | |
# Number of workers, default is 1 | |
NUM_WORKERS = int(os.getenv("NUM_WORKERS", 1)) | |
ONNXRUNTIME_EXECUTION_PROVIDERS = os.getenv( | |
"ONNXRUNTIME_EXECUTION_PROVIDERS", "[CUDAExecutionProvider,CPUExecutionProvider]" | |
) | |
# Port, default is 9001 | |
PORT = int(os.getenv("PORT", 9001)) | |
# Profile flag, default is False | |
PROFILE = str2bool(os.getenv("PROFILE", False)) | |
# Redis host, default is None | |
REDIS_HOST = os.getenv("REDIS_HOST", None) | |
# Redis port, default is 6379 | |
REDIS_PORT = int(os.getenv("REDIS_PORT", 6379)) | |
REDIS_SSL = str2bool(os.getenv("REDIS_SSL", False)) | |
REDIS_TIMEOUT = float(os.getenv("REDIS_TIMEOUT", 2.0)) | |
# Required ONNX providers, default is None | |
REQUIRED_ONNX_PROVIDERS = safe_split_value(os.getenv("REQUIRED_ONNX_PROVIDERS", None)) | |
# Roboflow server UUID | |
ROBOFLOW_SERVER_UUID = os.getenv("ROBOFLOW_SERVER_UUID", str(uuid.uuid4())) | |
# Roboflow service secret, default is None | |
ROBOFLOW_SERVICE_SECRET = os.getenv("ROBOFLOW_SERVICE_SECRET", None) | |
# Maximum embedding cache size for SAM, default is 10 | |
SAM_MAX_EMBEDDING_CACHE_SIZE = int(os.getenv("SAM_MAX_EMBEDDING_CACHE_SIZE", 10)) | |
# SAM version ID, default is "vit_h" | |
SAM_VERSION_ID = os.getenv("SAM_VERSION_ID", "vit_h") | |
# Device ID, default is "sample-device-id" | |
INFERENCE_SERVER_ID = os.getenv("INFERENCE_SERVER_ID", None) | |
# Stream ID, default is None | |
STREAM_ID = os.getenv("STREAM_ID") | |
try: | |
STREAM_ID = int(STREAM_ID) | |
except (TypeError, ValueError): | |
pass | |
# Tags used for device management | |
TAGS = safe_split_value(os.getenv("TAGS", "")) | |
# TensorRT cache path, default is MODEL_CACHE_DIR | |
TENSORRT_CACHE_PATH = os.getenv("TENSORRT_CACHE_PATH", MODEL_CACHE_DIR) | |
# Set TensorRT cache path | |
os.environ["ORT_TENSORRT_CACHE_PATH"] = TENSORRT_CACHE_PATH | |
# Version check mode, one of "once" or "continuous", default is "once" | |
VERSION_CHECK_MODE = os.getenv("VERSION_CHECK_MODE", "once") | |
# Metlo key, default is None | |
METLO_KEY = os.getenv("METLO_KEY", None) | |
# Core model bucket | |
CORE_MODEL_BUCKET = os.getenv( | |
"CORE_MODEL_BUCKET", | |
( | |
"roboflow-core-model-prod" | |
if PROJECT == "roboflow-platform" | |
else "roboflow-core-model-staging" | |
), | |
) | |
# Inference bucket | |
INFER_BUCKET = os.getenv( | |
"INFER_BUCKET", | |
( | |
"roboflow-infer-prod" | |
if PROJECT == "roboflow-platform" | |
else "roboflow-infer-staging" | |
), | |
) | |
ACTIVE_LEARNING_ENABLED = str2bool(os.getenv("ACTIVE_LEARNING_ENABLED", True)) | |
ACTIVE_LEARNING_TAGS = safe_split_value(os.getenv("ACTIVE_LEARNING_TAGS", None)) | |
# Number inflight async tasks for async model manager | |
NUM_PARALLEL_TASKS = int(os.getenv("NUM_PARALLEL_TASKS", 512)) | |
STUB_CACHE_SIZE = int(os.getenv("STUB_CACHE_SIZE", 256)) | |
# New stream interface variables | |
PREDICTIONS_QUEUE_SIZE = int( | |
os.getenv("INFERENCE_PIPELINE_PREDICTIONS_QUEUE_SIZE", 512) | |
) | |
RESTART_ATTEMPT_DELAY = int(os.getenv("INFERENCE_PIPELINE_RESTART_ATTEMPT_DELAY", 1)) | |
DEFAULT_BUFFER_SIZE = int(os.getenv("VIDEO_SOURCE_BUFFER_SIZE", "64")) | |
DEFAULT_ADAPTIVE_MODE_STREAM_PACE_TOLERANCE = float( | |
os.getenv("VIDEO_SOURCE_ADAPTIVE_MODE_STREAM_PACE_TOLERANCE", "0.1") | |
) | |
DEFAULT_ADAPTIVE_MODE_READER_PACE_TOLERANCE = float( | |
os.getenv("VIDEO_SOURCE_ADAPTIVE_MODE_READER_PACE_TOLERANCE", "5.0") | |
) | |
DEFAULT_MINIMUM_ADAPTIVE_MODE_SAMPLES = int( | |
os.getenv("VIDEO_SOURCE_MINIMUM_ADAPTIVE_MODE_SAMPLES", "10") | |
) | |
DEFAULT_MAXIMUM_ADAPTIVE_FRAMES_DROPPED_IN_ROW = int( | |
os.getenv("VIDEO_SOURCE_MAXIMUM_ADAPTIVE_FRAMES_DROPPED_IN_ROW", "16") | |
) | |
NUM_CELERY_WORKERS = os.getenv("NUM_CELERY_WORKERS", 4) | |
CELERY_LOG_LEVEL = os.getenv("CELERY_LOG_LEVEL", "WARNING") | |
LOCAL_INFERENCE_API_URL = os.getenv("LOCAL_INFERENCE_API_URL", "http://127.0.0.1:9001") | |
HOSTED_DETECT_URL = ( | |
"https://detect.roboflow.com" | |
if PROJECT == "roboflow-platform" | |
else "https://lambda-object-detection.staging.roboflow.com" | |
) | |
HOSTED_INSTANCE_SEGMENTATION_URL = ( | |
"https://outline.roboflow.com" | |
if PROJECT == "roboflow-platform" | |
else "https://lambda-instance-segmentation.staging.roboflow.com" | |
) | |
HOSTED_CLASSIFICATION_URL = ( | |
"https://classify.roboflow.com" | |
if PROJECT == "roboflow-platform" | |
else "https://lambda-classification.staging.roboflow.com" | |
) | |
HOSTED_CORE_MODEL_URL = ( | |
"https://infer.roboflow.com" | |
if PROJECT == "roboflow-platform" | |
else "https://3hkaykeh3j.execute-api.us-east-1.amazonaws.com" | |
) | |
DISABLE_WORKFLOW_ENDPOINTS = str2bool(os.getenv("DISABLE_WORKFLOW_ENDPOINTS", False)) | |
WORKFLOWS_STEP_EXECUTION_MODE = os.getenv("WORKFLOWS_STEP_EXECUTION_MODE", "remote") | |
WORKFLOWS_REMOTE_API_TARGET = os.getenv("WORKFLOWS_REMOTE_API_TARGET", "hosted") | |
WORKFLOWS_MAX_CONCURRENT_STEPS = int(os.getenv("WORKFLOWS_MAX_CONCURRENT_STEPS", "8")) | |
WORKFLOWS_REMOTE_EXECUTION_MAX_STEP_BATCH_SIZE = int( | |
os.getenv("WORKFLOWS_REMOTE_EXECUTION_MAX_STEP_BATCH_SIZE", "1") | |
) | |
WORKFLOWS_REMOTE_EXECUTION_MAX_STEP_CONCURRENT_REQUESTS = int( | |
os.getenv("WORKFLOWS_REMOTE_EXECUTION_MAX_STEP_CONCURRENT_REQUESTS", "8") | |
) | |