Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import open_clip | |
from dva.io import load_from_config | |
class TextConditioner(nn.Module): | |
def __init__( | |
self, | |
encoder_config, | |
): | |
super().__init__() | |
self.encoder = load_from_config(encoder_config) | |
def forward(self, batch, rm, amp=False, precision_dtype=torch.float32): | |
assert 'caption_token' in batch, "No tokenized caption in current batch for text conditions" | |
caption_token = batch['caption_token'] | |
with torch.autocast(device_type='cuda', dtype=precision_dtype, enabled=amp): | |
results = self.encoder(caption_token) | |
return results | |
class CLIPTextEncoder(nn.Module): | |
def __init__( | |
self, | |
pretrained_path: str, | |
model_spec: str = 'ViT-L-14', | |
): | |
super().__init__() | |
self.model, _, _ = open_clip.create_model_and_transforms(model_spec, pretrained=pretrained_path) | |
self.model.eval() | |
def forward(self, text): | |
text_features = self.model.encode_text(text) | |
text_features /= text_features.norm(dim=-1, keepdim=True) | |
return text_features[:, None, :] | |