Spaces:
Running
on
L4
Running
on
L4
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch as th | |
import torch.nn as nn | |
from torchvision.models import vgg19 | |
import torch.nn.functional as F | |
import logging | |
logger = logging.getLogger(__name__) | |
class Vgg19(nn.Module): | |
def __init__(self, requires_grad=False): | |
super(Vgg19, self).__init__() | |
vgg19_network = vgg19(pretrained=True) | |
# vgg19_network.load_state_dict(state_dict) | |
vgg_pretrained_features = vgg19_network.features | |
self.slice1 = nn.Sequential() | |
self.slice2 = nn.Sequential() | |
self.slice3 = nn.Sequential() | |
self.slice4 = nn.Sequential() | |
self.slice5 = nn.Sequential() | |
for x in range(2): | |
self.slice1.add_module(str(x), vgg_pretrained_features[x]) | |
for x in range(2, 7): | |
self.slice2.add_module(str(x), vgg_pretrained_features[x]) | |
for x in range(7, 12): | |
self.slice3.add_module(str(x), vgg_pretrained_features[x]) | |
for x in range(12, 21): | |
self.slice4.add_module(str(x), vgg_pretrained_features[x]) | |
for x in range(21, 30): | |
self.slice5.add_module(str(x), vgg_pretrained_features[x]) | |
if not requires_grad: | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, X): | |
h_relu1 = self.slice1(X) | |
h_relu2 = self.slice2(h_relu1) | |
h_relu3 = self.slice3(h_relu2) | |
h_relu4 = self.slice4(h_relu3) | |
h_relu5 = self.slice5(h_relu4) | |
out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5] | |
return out | |
class VGGLossMasked(nn.Module): | |
def __init__(self, weights=None): | |
super().__init__() | |
self.vgg = Vgg19() | |
if weights is None: | |
# self.weights = [1.0 / 32, 1.0 / 16, 1.0 / 8, 1.0 / 4, 1.0] | |
self.weights = [20.0, 5.0, 0.9, 0.5, 0.5] | |
else: | |
self.weights = weights | |
def normalize(self, batch): | |
mean = batch.new_tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1) | |
std = batch.new_tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1) | |
return ((batch / 255.0).clamp(0.0, 1.0) - mean) / std | |
def forward(self, x_rgb, y_rgb, mask): | |
x_norm = self.normalize(x_rgb) | |
y_norm = self.normalize(y_rgb) | |
x_vgg = self.vgg(x_norm) | |
y_vgg = self.vgg(y_norm) | |
loss = 0 | |
for i in range(len(x_vgg)): | |
if isinstance(mask, th.Tensor): | |
m = F.interpolate( | |
mask, size=(x_vgg[i].shape[-2], x_vgg[i].shape[-1]), mode="bilinear" | |
).detach() | |
else: | |
m = mask | |
vx = x_vgg[i] * m | |
vy = y_vgg[i] * m | |
loss += self.weights[i] * (vx - vy).abs().mean() | |
# logger.info( | |
# f"loss for {i}, {loss.item()} vx={vx.shape} vy={vy.shape} {vx.max()} {vy.max()}" | |
# ) | |
return loss | |